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1 Introduction

The idea of intuitionistic fuzzy set was first published by Atanassov [1, 2], as a generalization of
the notion of fuzzy set. Atanassov [2] explored the concept of fuzzy set theory [10] by intuitionis-
tic fuzzy set (IFS) theory. The existence and uniqueness of the solution of a differential equation
with intuitionistic fuzzy data has been studied by several authors [8, 9]. Numerical Solution Of
Intuitionistic Fuzzy Differential Equations By Euler and Taylor Methods has been introduced in
[4]. In this paper, intuitionistic fuzzy Cauchy problem is solved numerically by Runge–Kutta of
order four method based on [4] and establish that this method is better than Euler method.

This paper is organised as follows: In Section 2, some basic results on intuitionistic fuzzy
sets and the metric space, which have been discussed in [7, 9], are given. Section 3 contains
intuitionistic fuzzy differential equation whose numerical solution is the main interest of this
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paper. Solving numerically the intuitionistic fuzzy differential equation by Runge–Kutta method
of order four is discussed in Section 4. We illustrate an example and conclusion in the last section.

2 Preliminairies

An intuitionistic fuzzy set (IFS) A ∈ X is defined as an object of the following form

A = {(x, µA(x), νA(x), x ∈ X)},

where the functions µA, νA(x) : X → [0, 1] define the degree of membership and the degree of
non-membership of the element x ∈ X , respectively, and for every x ∈ X

0 ≤ µA(x) + νA(x) ≤ 1.

Obviously, each ordinary fuzzy set may be written as

{〈x, µA(x), 1− µA(x)〉|x ∈ X}.

Definition 2.1. [2] The value of

πA(x) = 1− µA(x)− νA(x)

is called the degree of non-determinacy (or uncertainty) of the element x ∈ X to the intuitionistic
fuzzy set A.

Remark 2.1. Clearly, in the case of ordinary fuzzy sets, πA(x) = 0 for every x ∈ X .

we denote by

IF1 = {〈u, v〉 : R→ [0, 1]2, ∀x ∈ R 0 ≤ u(x) + v(x) ≤ 1}

the collection of all intuitionistic fuzzy number by IF1. An element 〈u, v〉 of IF1 is called intu-
itionistic fuzzy number if it satisfies the following conditions:

(i) is normal, i.e., there exists x0, x1 ∈ R such that u(x0) = 1 and v(x1) = 1.

(ii) u is fuzzy convex and v is fuzzy concave.

(iii) u is upper semi-continuous and v is lower semi-continuous.

(iv) supp(u) = cl{x ∈ R : v(x) < 1} is bounded.

Remark 2.2. If 〈u, v〉 a fuzzy number, so we can see [〈u, v〉]α as [u]α and [〈u, v〉]α as [1− v]α.

A Triangular Intuitionistic Fuzzy Number (TIFN) 〈u, v〉 is an intuitionistic fuzzy set in R with
the following membership function u and non-membership function v:

u(x) =



x−a1
a2−a1 if a1 ≤ x ≤ a2

a3−x
a3−a2 if a2 ≤ x ≤ a3

0 otherwise
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v(x) =



a2−x
a2−a′1

if a′1 ≤ x ≤ a2

x−a2
a′3−a2

if a2 ≤ x ≤ a′3

1 otherwise

where a′1 ≤ a1 ≤ a2 ≤ a3 ≤ a′3 and u(x), v(x) ≤ 0.5 for u(x) = v(x), ∀x ∈ R.
This TIFN is denoted by 〈u, v〉=〈a1, a2, a3; a

′
1, a2, a

′
3〉 where,

[〈u, v〉]α = [a1 + α(a2 − a1), a3 − α(a3 − a2)],

[〈u, v〉]α = [a′1 + α(a2 − a′1), a′3 − α(a′3 − a2)].

Definition 2.2. [7] Let 〈u, v〉 an element of IF1 and α ∈ [0, 1], we define the following sets:

[〈u, v〉]+l (α) = inf{x ∈ R|u(x) ≥ α},

[〈u, v〉]+r (α) = sup{x ∈ R|u(x) ≥ α},

[〈u, v〉]−l (α) = inf{x ∈ R|v(x) ≤ 1− α},

[〈u, v〉]−r (α) = sup{x ∈ R|v(x) ≤ 1− α}.

Remark 2.3.
[〈u, v〉]α =

[
[〈u, v〉]+l (α), [〈u, v〉]+r (α)

]
,

[〈u, v〉]α =
[
[〈u, v〉]−l (α), [〈u, v〉]−r (α)

]
.

We define the following operations by:

[〈u, v〉 ⊕ 〈z, w〉]α = [〈u, v〉]α + [〈z, w〉]α,

[λ〈u, v〉]α = λ[〈u, v〉]α,

[〈u, v〉 ⊕ 〈z, w〉]α = [〈u, v〉]α + [〈z, w〉]α,

[λ〈u, v〉]α = λ[〈u, v〉]α,

where 〈u, v〉, 〈z, w〉 ∈ IF1 and λ ∈ R

Definition 2.3. Let 〈u, v〉 and 〈u′, v′〉 ∈ IF1, the H-difference is the IFN 〈z, w〉 ∈ IF1, if it exists,
such that

〈u, v〉 	 〈u′, v′〉 = 〈z, w〉 ⇐⇒ 〈u, v〉 = 〈u′, v′〉 ⊕ 〈z, w〉

On the space IF1 we will consider the following Lp-metric,
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Theorem 2.1. [7] For 1 ≤ p ≤ ∞,

dp(〈u, v〉, 〈z, w〉) = (
1

4
)
1
p

{∫ 1

0

∣∣∣[〈u, v〉]+r (α)− [〈z, w〉]+r (α)
∣∣∣pdα

+

∫ 1

0

∣∣∣[〈u, v〉]+l (α)− [〈z, w〉]+l (α)
∣∣∣pdα

+

∫ 1

0

∣∣∣[〈u, v〉]−r (α)− [〈z, w〉]−r (α)
∣∣∣pdα∫ 1

0

∣∣∣[〈u, v〉]−l (α)− [〈z, w〉]−l (α)
∣∣∣pdα} 1

p

and for p =∞

d∞(〈u, v〉, 〈z, w〉) =
1

4

[
sup

0<α≤1

∣∣∣[〈u, v〉]+r (α)− [〈z, w〉]+r (α)
∣∣∣

+ sup
0<α≤1

∣∣∣[〈u, v〉]+l (α)− [〈z, w〉]+l (α)
∣∣∣

+ sup
0<α≤1

∣∣∣[〈u, v〉]−r (α)− [〈z, w〉]−r (α)
∣∣∣

+ sup
0<α≤1

∣∣∣[〈u, v〉]−l (α)− [〈z, w〉]−l (α)
∣∣∣]

is a metric on IF1.

Definition 2.4. [9] Let F : [a, b]→ IF1 be an intuitionistic fuzzy valued mapping and t0 ∈ [a, b].
Then F is called intuitionistic fuzzy continuous in t0 iff:

∀(ε > 0)(∃δ > 0)(∀t ∈ [a, b] tel que |t− t0| < δ)⇒ dp(F (t), F (t0)) < ε.

Definition 2.5. [9] F is called intuitionistic fuzzy continuous iff is intuitionistic fuzzy continuous
in every point of [a, b].

Definition 2.6. A mapping F : [a, b]→ IF1 is said to be Hukuhara derivable at t0 if there exists
F ′(t0) ∈ IF1 such that both limits:

lim
∆t→0+

F (t0 + ∆t) � F (t0)

∆t

and

lim
∆t→0+

F (t0) � F (t0 −∆t)

∆t

exist and they are equal to F ′(t0) = 〈u′(t0), v′(t0)〉, which is called the Hukuhara derivative of F
at t0.

3 The intuitionistic fuzzy differential equation

In this section, we consider the initial value problem for the intuitionistic fuzzy differential equa-
tion {

x′(t) = f(t, x(t)), t ∈ I
x(t0) = 〈ut0 , vt0〉 ∈ IF1

, (1)
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where x ∈ IF1 is unknown I = [t0, T ] and f : I × IF1 → IF1. x(t0) is intuitionistic fuzzy
number. Denote the α− level set

[x(t)]α =
[
[x(t)]+l (α), [x(t)]+r (α)

]
[x(t)]α =

[
x(t)]−l (α), [x(t)]−r (α)

]
and

[x(t0)]α =
[
[x(t0)]+l (α), [x(t0)]+r (α)

]
[x(t0)]α =

[
x(t0)]−l (α), [x(t0)]−r (α)

]
[f(t, x(t))]α =

[
f+

1 (t, x(t);α), f+
2 (t, x(t);α)

]
[f(t, x(t))]α =

[
f−3 (t, x(t);α), f−4 (t, x(t);α)

]
,

where
f+

1 (t, x(t);α) = min
{
f(t, u)|u ∈

[
[x(t)]+l (α), [x(t)]+r (α)

]}
f+

2 (t, x(t);α) = max
{
f(t, u)|u ∈

[
[x(t)]+l (α), [x(t)]+r (α)

]}
f−3 (t, x(t);α) = min

{
f(t, u)|u ∈

[
x(t)]−l (α), [x(t)]−r (α)

]}
f−4 (t, x(t);α) = max

{
f(t, u)|u ∈

[
x(t)]−l (α), [x(t)]−r (α)

]}
.

(2)

Denote
f+

1 (t, x(t);α) = G
(
t, [x(t)]+l (α), [x(t)]+r (α)

)
f+

2 (t, x(t);α) = H
(
t, [x(t)]+l (α), [x(t)]+r (α)

)
f−3 (t, x(t);α) = L

(
t, [x(t)]−l (α), [x(t)]−r (α)

)
f−4 (t, x(t);α) = K

(
t, [x(t)]−l (α), [x(t)]−r (α)

)
(3)

Denote by C(I, IF1) the set of all continuous mappings from I to IF1.
Defining the metric

D(f, g) = sup
t∈I

d∞((f1,t, f2,t), (g1,t, g2,t))

with f(t) = (f1,t, f2,t) et g(t) = (g1,t, g2,t).

Definition 3.1. [9] x : I → IF1 is a solution of the initial value problem (1), if and only if it is
continuous and satisfies the integral equation

x(t) = x(t0)⊕
∫ t

t0

f(s, x(s))ds.

Sufficient conditions for the existence of an unique solution to Eq. (1) are:
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1. Continuity of f .

2. Lipschitz condition: for any pair
(
t, 〈u, v〉

)
,
(
t, 〈z, w〉

)
∈ I × IF1, we have

d∞

(
f
(
t, 〈u, v〉

)
, f
(
t, 〈z, w〉

))
≤ Kd∞

(
〈u, v〉 , 〈z, w〉

)
,

where K > 0 is a given constant.

Denote by C(I × IF1, IF1) the set of all continuous mappings from I × IF1 to IF1.

Theorem 3.1. [9] Assume that f ∈ C(I × IF1, IF1) and satisfies∣∣[f(s, x(s)]+r (α)− [f(s, y(s)]+r (α)]
∣∣ ≤ k

∣∣[x(s)]+r (α)− [y(s)]+r (α)]
∣∣∣∣[f(s, x(s)]+l (α)− [f(s, y(s)]+l (α)]

∣∣ ≤ k
∣∣[x(s)]+l (α)− [y(s)]+l (α)]

∣∣∣∣[f(s, x(s)]−r (α)− [f(s, y(s)]−r (α)]
∣∣ ≤ k

∣∣[x(s)]−r (α)− [y(s)]−r (α)]
∣∣∣∣[f(s, x(s)]−l (α)− [f(s, y(s)]−l (α)]

∣∣ ≤ k
∣∣[x(s)]−l (α)− [y(s)]−l (α)]

∣∣
with k|T − t0| ≤ 1, then the initial value problem (1) has an unique solution.

Proof. See [9].

4 The fourth order Runge–Kutta method

Let
[X(tn)]α =

[
[X(tn)]+l (α), [X(tn)]+r (α)

]
[X(tn)]α =

[
[X(tn)]−l (α), [X(tn)]−r (α)

]
be the exact solutions of (1) and

[x(tn)]α =
[
[x(tn)]+l (α), [x(tn)]+r (α)

]
[x(tn)]α =

[
[x(tn)]−l (α), [x(tn)]−r (α)

]
be approximated solutions at tn, 0 ≤ n ≤ N . The solutions are calculated by grid points at

t0 < t1 < t2 < . . . < tN = T, h =
T − t0
N

, tn = t0 + nh, n = 0, 1, ...N. (4)

We recall that
f+

1 (t, x(t);α) = G
(
t, [x(t)]+l (α), [x(t)]+r (α)

)
f+

2 (t, x(t);α) = H
(
t, [x(t)]+l (α), [x(t)]+r (α)

)
f−3 (t, x(t);α) = L

(
t, [x(t)]−l (α), [x(t)]−r (α)

)
f−4 (t, x(t);α) = K

(
t, [x(t)]−l (α), [x(t)]−r (α)

)
.

(5)
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The Runge–Kutta method of order 4 that calculates the value of the function in four interme-
diate points as follows:

[x(tn+1)]+l (α) = [x(tn)]+l (α) +
1

6
[K1 + 2K2 + 2K3 +K4], (6)

where 

K1 = hG
(
tn, [x(tn)]+l (α), [x(tn)]+r (α)

)
K2 = hG

(
tn + h

2
, [x(tn)]+l (α) + K1

2
, [x(tn)]+r (α) + K1

2

)
K3 = hG

(
tn + h

2
, [x(tn)]+l (α) + K2

2
, [x(tn)]+r (α) + K2

2

)
K4 = hG

(
tn + h, [x(tn)]+l (α) +K3, [x(tn)]+r (α) +K3

)
and

[x(tn+1)]+r (α) = [x(tn)]+r (α) +
1

6
[K1 + 2K2 + 2K3 +K4], (7)

where 

K1 = hH
(
tn, [x(tn)]+l (α), [x(tn)]+r (α)

)
K2 = hH

(
tn + h

2
, [x(tn)]+l (α) + K1

2
, [x(tn)]+r (α) + K1

2

)
K3 = hH

(
tn + h

2
, [x(tn)]+l (α) + K2

2
, [x(tn)]+r (α) + K2

2

)
K4 = hH

(
tn + h, [x(tn)]+l (α) +K3, [x(tn)]+r (α) +K3

)
and

[x(tn+1)]−l (α) = [x(tn)]−l (α) +
1

6
[K1 + 2K2 + 2K3 +K4], (8)

where 

K1 = hL
(
tn, [x(tn)]−l (α), [x(tn)]−r (α)

)
K2 = hL

(
tn + h

2
, [x(tn)]−l (α) + K1

2
, [x(tn)]−r (α) + K1

2

)
K3 = hL

(
tn + h

2
, [x(tn)]−l (α) + K2

2
, [x(tn)]−r (α) + K2

2

)
K4 = hL

(
tn + h, [x(tn)]−l (α) +K3, [x(tn)]−r (α) +K3

)
and

[x(tn+1)]−r (α) = [x(tn)]−r (α) +
1

6
[K1 + 2K2 + 2K3 +K4], (9)

where 

K1 = hK
(
tn, [x(tn)]−l (α), [x(tn)]−r (α)

)
K2 = hK

(
tn + h

2
, [x(tn)]−l (α) + K1

2
, [x(tn)]−r (α) + K1

2

)
K3 = hK

(
tn + h

2
, [x(tn)]−l (α) + K2

2
, [x(tn)]−r (α) + K2

2

)
K4 = hK

(
tn + h, [x(tn)]−l (α) +K3, [x(tn)]−r (α) +K3

)
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Let G(t, u+, v+), H(t, u+, v)+, L(t, u−, v)− and K(t, u−, v−) be the functions of (3), where
u+, v+, u− and v− are the constants and u+ ≤ v+ and u− ≤ v−. The domain of G and H is

M1 = {(t, u+, v+)\ t0 ≤ t ≤ T, ∞ < u+ ≤ v+, −∞ < v+ < +∞}

and the domain of L and K is

M2 = {(t, u−, v−)\ t0 ≤ t ≤ T, ∞ < u− ≤ v−, −∞ < v− < +∞},

where M1 ⊆M2.

Theorem 4.1. Let G(t, u+, v+), H(t, u+, v+) belong to C4(M1) and L(t, u−, v−), K(t, u−, v−)

belong to C4(M2) and the partial derivatives of G, H and L, K be bounded over M1 and M2

respectively. Then, for arbitrarily fixed 0 ≤ α ≤ 1, the numerical solutions of (6), (7), (8) and (9)

converge to the exact solutions [X(t)]+l (α), [X(t)]+r (α), [X(t)]−l (α) and [X(t)]−r (α) uniformly
in t.

Proof. See [4].

5 Example

Consider the intuitionistic fuzzy initial value problem{
x′(t) + x(t) = σ(t), for all t ≥ 0

x0 = (−1, 1, 0,−3
2
, 3

2
)

(10)

and σ(t) = 2 exp(−t)x0.
Applying the method of solution proposed in [9] we get

[x(t)]+l (α) = (α− 1) exp(−t)(1 + 2t)

[x(t)]+r (α) = (1− α) exp(−t)(1 + 2t)

[x(t)]−l (α) = (3t+ 3
2
)(α− 1)) exp(−t)

[x(t)]−r (α) = (3t+ 3
2
)(1− α)) exp(−t)

Therefore the exact solutions is given by

[X(t)]α =
[
(α− 1) exp(−t)(1 + 2t), (1− α) exp(−t)(1 + 2t)

]
[X(t)]α =

[
(3t+ 3

2
)(α− 1) exp(−t), (3t+ 3

2
)(1− α) exp(−t)

]
,

which at t = 0.3 are

[X(0.3)]α =
[
(α− 1) exp(−0.3)(1.6), (1− α) exp(−0.3)(1.6)

]
[X(0.3)]α =

[
(0.9 + 3

2
)(α− 1) exp(−0.3), (0.9 + 3

2
)(1− α) exp(−0.3)

]
.
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Applying the Runge–Kutta method proposed we get:

[x(tn+1)]+l (α) = [x(tn)]+l (α) +
1

6
[K1 + 2K2 + 2K3 +K4],

where 

K1 = h
[
[σ(tn)]+l (α)− [x(tn)]+l (α)

]
K2 = h

[
[σ(tn + h

2
)]+l (α)− [x(tn)]+l (α)− K1

2

]
K3 = h

[
[σ(tn + h

2
)]+l (α)− [x(tn)]+l (α)− K2

2

]
K4 = h

[
[σ(tn + h)]+l (α)− [x(tn)]+l (α)−K3

]
and

[x(tn+1)]+r (α) = [x(tn)]+r (α) +
1

6
[K1 + 2K2 + 2K3 +K4],

where 

K1 = h
[
[σ(tn)]+r (α)− [x(tn)]+r (α)

]
K2 = h

[
[σ(tn + h

2
)]+r (α)− [x(tn)]+r (α)− K1

2

]
K3 = h

[
[σ(tn + h

2
)]+r (α)− [x(tn)]+r (α)− K2

2

]
K4 = h

[
[σ(tn + h)]+r (α)− [x(tn)]+r (α)−K3

]
and

[x(tn+1)]−l (α) = [x(tn)]−l (α) +
1

6
[K1 + 2K2 + 2K3 +K4],

where 

K1 = h
[
[σ(tn)]−l (α)− [x(tn)]−l (α)

]
K2 = h

[
[σ(tn + h

2
)]−l (α)− [x(tn)]−l (α)− K1

2

]
K3 = h

[
[σ(tn + h

2
)]−l (α)− [x(tn)]−l (α)− K2

2

]
K4 = h

[
[σ(tn + h)]−l (α)− [x(tn)]−l (α)−K3

]
and

[x(tn+1)]−r (α) = [x(tn)]−r (α) +
1

6
[K1 + 2K2 + 2K3 +K4],
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where 

K1 = h
[
[σ(tn)]−r (α)− [x(tn)]−r (α)

]
K2 = h

[
[σ(tn + h

2
)]−r (α)− [x(tn)]−r (α)− K1

2

]
K3 = h

[
[σ(tn + h

2
)]−r (α)− [x(tn)]−r (α)− K2

2

]
K4 = h

[
[σ(tn + h)]−r (α)− [x(tn)]−r (α)−K3

]
,

where n = 0, 1, ...N and h = 1
N

.
The exact and approximate solutions by Runge–Kutta method are plotted at t = 0.3 and

h = 0.25 in Fig. 1.

Figure 1: h = 0.25

The error between the Euler and the 2nd-order and 4th-order Taylor method and 4th-order
Runge–Kutta method is plotted in Fig. 2.

6 Conclusion

In this work, we have used the proposed fourth-order Runge–Kutta method to find a numerical
solution of intuitionistic fuzzy differential equations. Taking into account the convergence order
of the Euler method is O(h), higher order of convergence O(h4) is obtained by the Runge–Kutta
method of order 4. Comparison of the solutions of this example shows that the Runge–Kutta
method of order 4 and the 4th-order Taylor method give a better solution than the Euler method.
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Figure 2: h = 0.25
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