Numerical solution of intuitionistic fuzzy differential equations by Runge-Kutta Method of order four

B. Ben Amma* and L. S. Chadli
LMACS, Laboratory of Applied Mathematics and Scientific Calculus
Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
e-mail: bouchrabenamma@gmail.com
* Corresponding author

Received: 14 May 2016
Accepted: 30 October 2016

Abstract

This paper presents solution for first order fuzzy differential equation by Runge-Kutta method of order four. This method is discussed in detail and this is followed by a complete error analysis. The accuracy and efficiency of the proposed method is illustrated by solving an intuitionistic fuzzy initial value problem.

Keywords: Intuitionistic fuzzy Cauchy problem, Runge-Kutta method of order four.
AMS Classification: 03E72, 08A72.

1 Introduction

The idea of intuitionistic fuzzy set was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set. Atanassov [2] explored the concept of fuzzy set theory [10] by intuitionistic fuzzy set (IFS) theory. The existence and uniqueness of the solution of a differential equation with intuitionistic fuzzy data has been studied by several authors [8, 9]. Numerical Solution Of Intuitionistic Fuzzy Differential Equations By Euler and Taylor Methods has been introduced in [4]. In this paper, intuitionistic fuzzy Cauchy problem is solved numerically by Runge-Kutta of order four method based on [4] and establish that this method is better than Euler method.

This paper is organised as follows: In Section 2, some basic results on intuitionistic fuzzy sets and the metric space, which have been discussed in [7, 9], are given. Section 3 contains intuitionistic fuzzy differential equation whose numerical solution is the main interest of this
paper. Solving numerically the intuitionistic fuzzy differential equation by Runge-Kutta method of order four is discussed in Section 4. We illustrate an example and conclusion in the last section.

2 Preliminairies

An intuitionistic fuzzy set (IFS) $A \in X$ is defined as an object of the following form

$$
A=\left\{\left(x, \mu_{A}(x), \nu_{A}(x), x \in X\right)\right\},
$$

where the functions $\mu_{A}, \nu_{A}(x): X \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$, respectively, and for every $x \in X$

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1 .
$$

Obviously, each ordinary fuzzy set may be written as

$$
\left\{\left\langle x, \mu_{A}(x), 1-\mu_{A}(x)\right\rangle \mid x \in X\right\} .
$$

Definition 2.1. [2] The value of

$$
\pi_{A}(x)=1-\mu_{A}(x)-\nu_{A}(x)
$$

is called the degree of non-determinacy (or uncertainty) of the element $x \in X$ to the intuitionistic fuzzy set A.

Remark 2.1. Clearly, in the case of ordinary fuzzy sets, $\pi_{A}(x)=0$ for every $x \in X$.
we denote by

$$
I F_{1}=\left\{\langle u, v\rangle: R \rightarrow[0,1]^{2}, \quad \forall x \in \mathbb{R} 0 \leq u(x)+v(x) \leq 1\right\}
$$

the collection of all intuitionistic fuzzy number by $I F_{1}$. An element $\langle u, v\rangle$ of $I F_{1}$ is called intuitionistic fuzzy number if it satisfies the following conditions:
(i) is normal, i.e., there exists $x_{0}, x_{1} \in \mathbb{R}$ such that $u\left(x_{0}\right)=1$ and $v\left(x_{1}\right)=1$.
(ii) u is fuzzy convex and v is fuzzy concave.
(iii) u is upper semi-continuous and v is lower semi-continuous.
(iv) $\operatorname{supp}(u)=\operatorname{cl}\{x \in \mathbb{R}: v(x)<1\}$ is bounded.

Remark 2.2. If $\langle u, v\rangle$ a fuzzy number, so we can see $[\langle u, v\rangle]_{\alpha}$ as $[u]^{\alpha}$ and $[\langle u, v\rangle]^{\alpha}$ as $[1-v]^{\alpha}$.
A Triangular Intuitionistic Fuzzy Number (TIFN) $\langle u, v\rangle$ is an intuitionistic fuzzy set in \mathbb{R} with the following membership function u and non-membership function v :

$$
u(x)=\left\{\begin{array}{cl}
\frac{x-a_{1}}{a_{2}-a_{1}} & \text { if } a_{1} \leq x \leq a_{2} \\
\frac{a_{3}-x}{a_{3}-a_{2}} & \text { if } a_{2} \leq x \leq a_{3} \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
v(x)=\left\{\begin{array}{cl}
\frac{a_{2}-x}{a_{2}-a_{1}^{\prime}} & \text { if } a_{1}^{\prime} \leq x \leq a_{2} \\
\frac{x-a_{2}}{a_{3}^{\prime}-a_{2}} & \text { if } a_{2} \leq x \leq a_{3}^{\prime} \\
1 & \text { otherwise }
\end{array}\right.
$$

where $a_{1}^{\prime} \leq a_{1} \leq a_{2} \leq a_{3} \leq a_{3}^{\prime}$ and $u(x), v(x) \leq 0.5$ for $u(x)=v(x), \forall x \in \mathbb{R}$.
This TIFN is denoted by $\langle u, v\rangle=\left\langle a_{1}, a_{2}, a_{3} ; a_{1}^{\prime}, a_{2}, a_{3}^{\prime}\right\rangle$ where,

$$
\begin{aligned}
& {[\langle u, v\rangle]_{\alpha}=\left[a_{1}+\alpha\left(a_{2}-a_{1}\right), a_{3}-\alpha\left(a_{3}-a_{2}\right)\right],} \\
& {[\langle u, v\rangle]^{\alpha}=\left[a_{1}^{\prime}+\alpha\left(a_{2}-a_{1}^{\prime}\right), a_{3}^{\prime}-\alpha\left(a_{3}^{\prime}-a_{2}\right)\right] .}
\end{aligned}
$$

Definition 2.2. [7] Let $\langle u, v\rangle$ an element of $I F_{1}$ and $\alpha \in[0,1]$, we define the following sets:

$$
\begin{gathered}
{[\langle u, v\rangle]_{l}^{+}(\alpha)=\inf \{x \in \mathbb{R} \mid u(x) \geq \alpha\},} \\
{[\langle u, v\rangle]_{r}^{+}(\alpha)=\sup \{x \in \mathbb{R} \mid u(x) \geq \alpha\},} \\
{[\langle u, v\rangle]_{l}^{-}(\alpha)=\inf \{x \in \mathbb{R} \mid v(x) \leq 1-\alpha\},} \\
{[\langle u, v\rangle]_{r}^{-}(\alpha)=\sup \{x \in \mathbb{R} \mid v(x) \leq 1-\alpha\} .}
\end{gathered}
$$

Remark 2.3.

$$
\begin{aligned}
& {[\langle u, v\rangle]_{\alpha}=\left[[\langle u, v\rangle]_{l}^{+}(\alpha),[\langle u, v\rangle]_{r}^{+}(\alpha)\right],} \\
& {[\langle u, v\rangle]^{\alpha}=\left[[\langle u, v\rangle]_{l}^{-}(\alpha),[\langle u, v\rangle]_{r}^{-}(\alpha)\right] .}
\end{aligned}
$$

We define the following operations by:

$$
\begin{gathered}
{[\langle u, v\rangle \oplus\langle z, w\rangle]^{\alpha}=[\langle u, v\rangle]^{\alpha}+[\langle z, w\rangle]^{\alpha},} \\
{[\lambda\langle u, v\rangle]^{\alpha}=\lambda[\langle u, v\rangle]^{\alpha},} \\
{[\langle u, v\rangle \oplus\langle z, w\rangle]_{\alpha}=[\langle u, v\rangle]_{\alpha}+[\langle z, w\rangle]_{\alpha},} \\
{[\lambda\langle u, v\rangle]_{\alpha}=\lambda[\langle u, v\rangle]_{\alpha},}
\end{gathered}
$$

where $\langle u, v\rangle,\langle z, w\rangle \in I F_{1}$ and $\lambda \in \mathbb{R}$
Definition 2.3. Let $\langle u, v\rangle$ and $\left\langle u^{\prime}, v^{\prime}\right\rangle \in I F_{1}$, the H-difference is the $I F N\langle z, w\rangle \in I F_{1}$, if it exists, such that

$$
\langle u, v\rangle \ominus\left\langle u^{\prime}, v^{\prime}\right\rangle=\langle z, w\rangle \Longleftrightarrow\langle u, v\rangle=\left\langle u^{\prime}, v^{\prime}\right\rangle \oplus\langle z, w\rangle
$$

On the space $I F_{1}$ we will consider the following L_{p}-metric,

Theorem 2.1. [7] For $1 \leq p \leq \infty$,

$$
\begin{aligned}
d_{p}(\langle u, v\rangle,\langle z, w\rangle)= & \left(\frac{1}{4}\right)^{\frac{1}{p}}\left\{\int_{0}^{1}\left|[\langle u, v\rangle]_{r}^{+}(\alpha)-[\langle z, w\rangle]_{r}^{+}(\alpha)\right|^{p} d \alpha\right. \\
& +\int_{0}^{1}\left|[\langle u, v\rangle]_{l}^{+}(\alpha)-[\langle z, w\rangle]_{l}^{+}(\alpha)\right|^{p} d \alpha \\
& +\int_{0}^{1}\left|[\langle u, v\rangle]_{r}^{-}(\alpha)-[\langle z, w\rangle]_{r}^{-}(\alpha)\right|^{p} d \alpha \\
& \left.\int_{0}^{1}\left|[\langle u, v\rangle]_{l}^{-}(\alpha)-[\langle z, w\rangle]_{l}^{-}(\alpha)\right|^{p} d \alpha\right\}^{\frac{1}{p}}
\end{aligned}
$$

and for $p=\infty$

$$
\begin{aligned}
d_{\infty}(\langle u, v\rangle,\langle z, w\rangle)= & \frac{1}{4}\left[\sup _{0<\alpha \leq 1}\left|[\langle u, v\rangle]_{r}^{+}(\alpha)-[\langle z, w\rangle]_{r}^{+}(\alpha)\right|\right. \\
& +\sup _{0<\alpha \leq 1}\left|[\langle u, v\rangle]_{l}^{+}(\alpha)-[\langle z, w\rangle]_{l}^{+}(\alpha)\right| \\
& +\sup _{0<\alpha \leq 1}\left|[\langle u, v\rangle]_{r}^{-}(\alpha)-[\langle z, w\rangle]_{r}^{-}(\alpha)\right| \\
& \left.+\sup _{0<\alpha \leq 1}\left|[\langle u, v\rangle]_{l}^{-}(\alpha)-[\langle z, w\rangle]_{l}^{-}(\alpha)\right|\right]
\end{aligned}
$$

is a metric on $I F_{1}$.
Definition 2.4. [9] Let $F:[a, b] \rightarrow I F_{1}$ be an intuitionistic fuzzy valued mapping and $t_{0} \in[a, b]$. Then F is called intuitionistic fuzzy continuous in t_{0} iff:

$$
\forall(\varepsilon>0)(\exists \delta>0)\left(\forall t \in[a, b] \text { tel que }\left|t-t_{0}\right|<\delta\right) \Rightarrow d_{p}\left(F(t), F\left(t_{0}\right)\right)<\varepsilon
$$

Definition 2.5. [9] F is called intuitionistic fuzzy continuous iff is intuitionistic fuzzy continuous in every point of $[a, b]$.
Definition 2.6. A mapping $F:[a, b] \rightarrow I F_{1}$ is said to be Hukuhara derivable at t_{0} if there exists $F^{\prime}\left(t_{0}\right) \in I F_{1}$ such that both limits:

$$
\lim _{\Delta t \rightarrow 0^{+}} \frac{F\left(t_{0}+\Delta t\right) \ominus F\left(t_{0}\right)}{\Delta t}
$$

and

$$
\lim _{\Delta t \rightarrow 0^{+}} \frac{F\left(t_{0}\right) \ominus F\left(t_{0}-\Delta t\right)}{\Delta t}
$$

exist and they are equal to $F^{\prime}\left(t_{0}\right)=\left\langle u^{\prime}\left(t_{0}\right), v^{\prime}\left(t_{0}\right)\right\rangle$, which is called the Hukuhara derivative of F at t_{0}.

3 The intuitionistic fuzzy differential equation

In this section, we consider the initial value problem for the intuitionistic fuzzy differential equation

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(t)), \quad t \in I \tag{1}\\
x\left(t_{0}\right)=\left\langle u_{t_{0}}, v_{t_{0}}\right\rangle \in I F_{1}
\end{array},\right.
$$

where $x \in I F_{1}$ is unknown $I=\left[t_{0}, T\right]$ and $f: I \times I F_{1} \rightarrow I F_{1} . x\left(t_{0}\right)$ is intuitionistic fuzzy number. Denote the $\alpha-$ level set

$$
\begin{aligned}
{[x(t)]_{\alpha} } & =\left[[x(t)]_{l}^{+}(\alpha),[x(t)]_{r}^{+}(\alpha)\right] \\
{[x(t)]^{\alpha} } & \left.=[x(t)]_{l}^{-}(\alpha),[x(t)]_{r}^{-}(\alpha)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[x\left(t_{0}\right)\right]_{\alpha} } & =\left[\left[x\left(t_{0}\right)\right]_{l}^{+}(\alpha),\left[x\left(t_{0}\right)\right]_{r}^{+}(\alpha)\right] \\
{\left[x\left(t_{0}\right)\right]^{\alpha} } & \left.=\left[x\left(t_{0}\right)\right]_{l}^{-}(\alpha),\left[x\left(t_{0}\right)\right]_{r}^{-}(\alpha)\right] \\
{[f(t, x(t))]_{\alpha} } & =\left[f_{1}^{+}(t, x(t) ; \alpha), f_{2}^{+}(t, x(t) ; \alpha)\right] \\
{[f(t, x(t))]^{\alpha} } & =\left[f_{3}^{-}(t, x(t) ; \alpha), f_{4}^{-}(t, x(t) ; \alpha)\right],
\end{aligned}
$$

where

$$
\begin{align*}
f_{1}^{+}(t, x(t) ; \alpha) & =\min \left\{f(t, u) \mid u \in\left[[x(t)]_{l}^{+}(\alpha),[x(t)]_{r}^{+}(\alpha)\right]\right\} \\
f_{2}^{+}(t, x(t) ; \alpha) & =\max \left\{f(t, u) \mid u \in\left[[x(t)]_{l}^{+}(\alpha),[x(t)]_{r}^{+}(\alpha)\right]\right\} \tag{2}\\
f_{3}^{-}(t, x(t) ; \alpha) & \left.=\min \left\{f(t, u) \mid u \in[x(t)]_{l}^{-}(\alpha),[x(t)]_{r}^{-}(\alpha)\right]\right\} \\
f_{4}^{-}(t, x(t) ; \alpha) & \left.=\max \left\{f(t, u) \mid u \in[x(t)]_{l}^{-}(\alpha),[x(t)]_{r}^{-}(\alpha)\right]\right\} .
\end{align*}
$$

Denote

$$
\begin{align*}
& f_{1}^{+}(t, x(t) ; \alpha)=G\left(t,[x(t)]_{l}^{+}(\alpha),[x(t)]_{r}^{+}(\alpha)\right) \\
& f_{2}^{+}(t, x(t) ; \alpha)=H\left(t,[x(t)]_{l}^{+}(\alpha),[x(t)]_{r}^{+}(\alpha)\right) \tag{3}\\
& f_{3}^{-}(t, x(t) ; \alpha)=L\left(t,[x(t)]_{l}^{-}(\alpha),[x(t)]_{r}^{-}(\alpha)\right) \\
& f_{4}^{-}(t, x(t) ; \alpha)=K\left(t,[x(t)]_{l}^{-}(\alpha),[x(t)]_{r}^{-}(\alpha)\right)
\end{align*}
$$

Denote by $C\left(I, I F_{1}\right)$ the set of all continuous mappings from I to $I F_{1}$.
Defining the metric

$$
D(f, g)=\sup _{t \in I} d_{\infty}\left(\left(f_{1, t}, f_{2, t}\right),\left(g_{1, t}, g_{2, t}\right)\right)
$$

with $f(t)=\left(f_{1, t}, f_{2, t}\right)$ et $g(t)=\left(g_{1, t}, g_{2, t}\right)$.
Definition 3.1. [9] $x: I \rightarrow I F_{1}$ is a solution of the initial value problem (1), if and only if it is continuous and satisfies the integral equation

$$
x(t)=x\left(t_{0}\right) \oplus \int_{t_{0}}^{t} f(s, x(s)) d s .
$$

Sufficient conditions for the existence of an unique solution to Eq. (1) are:

1. Continuity of f.

2. Lipschitz condition: for any pair $(t,\langle u, v\rangle),(t,\langle z, w\rangle) \in I \times I F_{1}$, we have

$$
d_{\infty}(f(t,\langle u, v\rangle), f(t,\langle z, w\rangle)) \leq K d_{\infty}(\langle u, v\rangle,\langle z, w\rangle)
$$

where $K>0$ is a given constant.

Denote by $C\left(I \times I F_{1}, I F_{1}\right)$ the set of all continuous mappings from $I \times I F_{1}$ to $I F_{1}$.
Theorem 3.1. [9] Assume that $f \in C\left(I \times I F_{1}, I F_{1}\right)$ and satisfies

$$
\begin{aligned}
\mid\left[f(s, x(s)]_{r}^{+}(\alpha)-\left[f(s, y(s)]_{r}^{+}(\alpha)\right] \mid\right. & \left.\leq k \mid[x(s)]_{r}^{+}(\alpha)-[y(s)]_{r}^{+}(\alpha)\right] \mid \\
\mid\left[f(s, x(s)]_{l}^{+}(\alpha)-\left[f(s, y(s)]_{l}^{+}(\alpha)\right] \mid\right. & \left.\leq k \mid[x(s)]_{l}^{+}(\alpha)-[y(s)]_{l}^{+}(\alpha)\right] \mid \\
\mid\left[f(s, x(s)]_{r}^{-}(\alpha)-\left[f(s, y(s)]_{r}^{-}(\alpha)\right] \mid\right. & \left.\leq k \mid[x(s)]_{r}^{-}(\alpha)-[y(s)]_{r}^{-}(\alpha)\right] \mid \\
\mid\left[f(s, x(s)]_{l}^{-}(\alpha)-\left[f(s, y(s)]_{l}^{-}(\alpha)\right] \mid\right. & \left.\leq k \mid[x(s)]_{l}^{-}(\alpha)-[y(s)]_{l}^{-}(\alpha)\right] \mid
\end{aligned}
$$

with $k\left|T-t_{0}\right| \leq 1$, then the initial value problem (1) has an unique solution.
Proof. See [9].

4 The fourth order Runge-Kutta method

Let

$$
\begin{aligned}
& {\left[X\left(t_{n}\right)\right]_{\alpha}=\left[\left[X\left(t_{n}\right)\right]_{l}^{+}(\alpha),\left[X\left(t_{n}\right)\right]_{r}^{+}(\alpha)\right]} \\
& {\left[X\left(t_{n}\right)\right]^{\alpha}=\left[\left[X\left(t_{n}\right)\right]_{l}^{-}(\alpha),\left[X\left(t_{n}\right)\right]_{r}^{-}(\alpha)\right]}
\end{aligned}
$$

be the exact solutions of (1) and

$$
\begin{aligned}
{\left[x\left(t_{n}\right)\right]_{\alpha} } & =\left[\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha),\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)\right] \\
{\left[x\left(t_{n}\right)\right]^{\alpha} } & =\left[\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha),\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)\right]
\end{aligned}
$$

be approximated solutions at $t_{n}, 0 \leq n \leq N$. The solutions are calculated by grid points at

$$
\begin{equation*}
t_{0}<t_{1}<t_{2}<\ldots<t_{N}=T, \quad h=\frac{T-t_{0}}{N}, \quad t_{n}=t_{0}+n h, \quad n=0,1, \ldots N . \tag{4}
\end{equation*}
$$

We recall that

$$
\begin{align*}
f_{1}^{+}(t, x(t) ; \alpha) & =G\left(t,[x(t)]_{l}^{+}(\alpha),[x(t)]_{r}^{+}(\alpha)\right) \\
f_{2}^{+}(t, x(t) ; \alpha) & =H\left(t,[x(t)]_{l}^{+}(\alpha),[x(t)]_{r}^{+}(\alpha)\right) \tag{5}\\
f_{3}^{-}(t, x(t) ; \alpha) & =L\left(t,[x(t)]_{l}^{-}(\alpha),[x(t)]_{r}^{-}(\alpha)\right) \\
f_{4}^{-}(t, x(t) ; \alpha) & =K\left(t,[x(t)]_{l}^{-}(\alpha),[x(t)]_{r}^{-}(\alpha)\right) .
\end{align*}
$$

The Runge-Kutta method of order 4 that calculates the value of the function in four intermediate points as follows:

$$
\begin{equation*}
\left[x\left(t_{n+1}\right)\right]_{l}^{+}(\alpha)=\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right] \tag{6}
\end{equation*}
$$

where

$$
\left\{\begin{aligned}
K_{1} & =h G\left(t_{n},\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha),\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)\right) \\
K_{2} & =h G\left(t_{n}+\frac{h}{2},\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)+\frac{K_{1}}{2},\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)+\frac{K_{1}}{2}\right) \\
K_{3} & =h G\left(t_{n}+\frac{h}{2},\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)+\frac{K_{2}}{2},\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)+\frac{K_{2}}{2}\right) \\
K_{4} & =h G\left(t_{n}+h,\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)+K_{3},\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)+K_{3}\right)
\end{aligned}\right.
$$

and

$$
\begin{equation*}
\left[x\left(t_{n+1}\right)\right]_{r}^{+}(\alpha)=\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right] \tag{7}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h H\left(t_{n},\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha),\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)\right) \\
K_{2}=h H\left(t_{n}+\frac{h}{2},\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)+\frac{K_{1}}{2},\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)+\frac{K_{1}}{2}\right) \\
K_{3}=h H\left(t_{n}+\frac{h}{2},\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)+\frac{K_{2}}{2},\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)+\frac{K_{2}}{2}\right) \\
K_{4}=h H\left(t_{n}+h,\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)+K_{3},\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)+K_{3}\right)
\end{array}\right.
$$

and

$$
\begin{equation*}
\left[x\left(t_{n+1}\right)\right]_{l}^{-}(\alpha)=\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right] \tag{8}
\end{equation*}
$$

where

$$
\left\{\begin{aligned}
K_{1} & =h L\left(t_{n},\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha),\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)\right) \\
K_{2} & =h L\left(t_{n}+\frac{h}{2},\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)+\frac{K_{1}}{2},\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)+\frac{K_{1}}{2}\right) \\
K_{3} & =h L\left(t_{n}+\frac{h}{2},\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)+\frac{K_{2}}{2},\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)+\frac{K_{2}}{2}\right) \\
K_{4} & =h L\left(t_{n}+h,\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)+K_{3},\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)+K_{3}\right)
\end{aligned}\right.
$$

and

$$
\begin{equation*}
\left[x\left(t_{n+1}\right)\right]_{r}^{-}(\alpha)=\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right] \tag{9}
\end{equation*}
$$

where

$$
\left\{\begin{aligned}
K_{1} & =h K\left(t_{n},\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha),\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)\right) \\
K_{2} & =h K\left(t_{n}+\frac{h}{2},\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)+\frac{K_{1}}{2},\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)+\frac{K_{1}}{2}\right) \\
K_{3} & =h K\left(t_{n}+\frac{h}{2},\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)+\frac{K_{2}}{2},\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)+\frac{K_{2}}{2}\right) \\
K_{4} & =h K\left(t_{n}+h,\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)+K_{3},\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)+K_{3}\right)
\end{aligned}\right.
$$

Let $G\left(t, u^{+}, v^{+}\right), H\left(t, u^{+}, v\right)^{+}, L\left(t, u^{-}, v\right)^{-}$and $K\left(t, u^{-}, v^{-}\right)$be the functions of (3), where u^{+}, v^{+}, u^{-}and v^{-}are the constants and $u^{+} \leq v^{+}$and $u^{-} \leq v^{-}$. The domain of G and H is

$$
M_{1}=\left\{\left(t, u^{+}, v^{+}\right) \backslash t_{0} \leq t \leq T, \infty<u^{+} \leq v^{+}, \quad-\infty<v^{+}<+\infty\right\}
$$

and the domain of L and K is

$$
M_{2}=\left\{\left(t, u^{-}, v^{-}\right) \backslash t_{0} \leq t \leq T, \quad \infty<u^{-} \leq v^{-}, \quad-\infty<v^{-}<+\infty\right\}
$$

where $M_{1} \subseteq M_{2}$.
Theorem 4.1. Let $G\left(t, u^{+}, v^{+}\right), H\left(t, u^{+}, v^{+}\right)$belong to $C^{4}\left(M_{1}\right)$ and $L\left(t, u^{-}, v^{-}\right), K\left(t, u^{-}, v^{-}\right)$ belong to $C^{4}\left(M_{2}\right)$ and the partial derivatives of G, H and L, K be bounded over M_{1} and M_{2} respectively. Then, for arbitrarily fixed $0 \leq \alpha \leq 1$, the numerical solutions of (6), (7), (8) and (9) converge to the exact solutions $[X(t)]_{l}^{+}(\alpha),[X(t)]_{r}^{+}(\alpha),[X(t)]_{l}^{-}(\alpha)$ and $[X(t)]_{r}^{-}(\alpha)$ uniformly in t.

Proof. See [4].

5 Example

Consider the intuitionistic fuzzy initial value problem

$$
\left\{\begin{align*}
x^{\prime}(t)+x(t) & =\sigma(t), \text { for all } t \geq 0 \tag{10}\\
x_{0} & =\left(-1,1,0,-\frac{3}{2}, \frac{3}{2}\right)
\end{align*}\right.
$$

and $\sigma(t)=2 \exp (-t) x_{0}$.
Applying the method of solution proposed in [9] we get

$$
\left\{\begin{array}{l}
{[x(t)]_{l}^{+}(\alpha)=(\alpha-1) \exp (-t)(1+2 t)} \\
{[x(t)]_{r}^{+}(\alpha)=(1-\alpha) \exp (-t)(1+2 t)} \\
\left.[x(t)]_{l}^{-}(\alpha)=\left(3 t+\frac{3}{2}\right)(\alpha-1)\right) \exp (-t) \\
\left.[x(t)]_{r}^{-}(\alpha)=\left(3 t+\frac{3}{2}\right)(1-\alpha)\right) \exp (-t)
\end{array}\right.
$$

Therefore the exact solutions is given by

$$
\begin{aligned}
& {[X(t)]_{\alpha}=[(\alpha-1) \exp (-t)(1+2 t),(1-\alpha) \exp (-t)(1+2 t)]} \\
& {[X(t)]^{\alpha}=\left[\left(3 t+\frac{3}{2}\right)(\alpha-1) \exp (-t),\left(3 t+\frac{3}{2}\right)(1-\alpha) \exp (-t)\right]}
\end{aligned}
$$

which at $t=0.3$ are

$$
\begin{aligned}
& {[X(0.3)]_{\alpha}=[(\alpha-1) \exp (-0.3)(1.6),(1-\alpha) \exp (-0.3)(1.6)]} \\
& {[X(0.3)]^{\alpha}=\left[\left(0.9+\frac{3}{2}\right)(\alpha-1) \exp (-0.3),\left(0.9+\frac{3}{2}\right)(1-\alpha) \exp (-0.3)\right]}
\end{aligned}
$$

Applying the Runge-Kutta method proposed we get:

$$
\left[x\left(t_{n+1}\right)\right]_{l}^{+}(\alpha)=\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right],
$$

where

$$
\left\{\begin{aligned}
K_{1} & =h\left[\left[\sigma\left(t_{n}\right)\right]_{l}^{+}(\alpha)-\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)\right] \\
K_{2} & =h\left[\left[\sigma\left(t_{n}+\frac{h}{2}\right)\right]_{l}^{+}(\alpha)-\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)-\frac{K_{1}}{2}\right] \\
K_{3} & =h\left[\left[\sigma\left(t_{n}+\frac{h}{2}\right)\right]_{l}^{+}(\alpha)-\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)-\frac{K_{2}}{2}\right] \\
K_{4} & =h\left[\left[\sigma\left(t_{n}+h\right)\right]_{l}^{+}(\alpha)-\left[x\left(t_{n}\right)\right]_{l}^{+}(\alpha)-K_{3}\right]
\end{aligned}\right.
$$

and

$$
\left[x\left(t_{n+1}\right)\right]_{r}^{+}(\alpha)=\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right]
$$

where

$$
\left\{\begin{aligned}
K_{1} & =h\left[\left[\sigma\left(t_{n}\right)\right]_{r}^{+}(\alpha)-\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)\right] \\
K_{2} & =h\left[\left[\sigma\left(t_{n}+\frac{h}{2}\right)\right]_{r}^{+}(\alpha)-\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)-\frac{K_{1}}{2}\right] \\
K_{3} & =h\left[\left[\sigma\left(t_{n}+\frac{h}{2}\right)\right]_{r}^{+}(\alpha)-\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)-\frac{K_{2}}{2}\right] \\
K_{4} & =h\left[\left[\sigma\left(t_{n}+h\right)\right]_{r}^{+}(\alpha)-\left[x\left(t_{n}\right)\right]_{r}^{+}(\alpha)-K_{3}\right]
\end{aligned}\right.
$$

and

$$
\left[x\left(t_{n+1}\right)\right]_{l}^{-}(\alpha)=\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right]
$$

where

$$
\left\{\begin{aligned}
K_{1} & =h\left[\left[\sigma\left(t_{n}\right)\right]_{l}^{-}(\alpha)-\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)\right] \\
K_{2} & =h\left[\left[\sigma\left(t_{n}+\frac{h}{2}\right)\right]_{l}^{-}(\alpha)-\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)-\frac{K_{1}}{2}\right] \\
K_{3} & =h\left[\left[\sigma\left(t_{n}+\frac{h}{2}\right)\right]_{l}^{-}(\alpha)-\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)-\frac{K_{2}}{2}\right] \\
K_{4} & =h\left[\left[\sigma\left(t_{n}+h\right)\right]_{l}^{-}(\alpha)-\left[x\left(t_{n}\right)\right]_{l}^{-}(\alpha)-K_{3}\right]
\end{aligned}\right.
$$

and

$$
\left[x\left(t_{n+1}\right)\right]_{r}^{-}(\alpha)=\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right]
$$

where

$$
\left\{\begin{aligned}
K_{1} & =h\left[\left[\sigma\left(t_{n}\right)\right]_{r}^{-}(\alpha)-\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)\right] \\
K_{2} & =h\left[\left[\sigma\left(t_{n}+\frac{h}{2}\right)\right]_{r}^{-}(\alpha)-\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)-\frac{K_{1}}{2}\right] \\
K_{3} & =h\left[\left[\sigma\left(t_{n}+\frac{h}{2}\right)\right]_{r}^{-}(\alpha)-\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)-\frac{K_{2}}{2}\right] \\
K_{4} & =h\left[\left[\sigma\left(t_{n}+h\right)\right]_{r}^{-}(\alpha)-\left[x\left(t_{n}\right)\right]_{r}^{-}(\alpha)-K_{3}\right]
\end{aligned}\right.
$$

where $n=0,1, \ldots N$ and $h=\frac{1}{N}$.
The exact and approximate solutions by Runge-Kutta method are plotted at $t=0.3$ and $h=0.25$ in Fig. 1 .

Figure 1: $h=0.25$

The error between the Euler and the 2nd-order and 4th-order Taylor method and 4th-order Runge-Kutta method is plotted in Fig. 2.

6 Conclusion

In this work, we have used the proposed fourth-order Runge-Kutta method to find a numerical solution of intuitionistic fuzzy differential equations. Taking into account the convergence order of the Euler method is $O(h)$, higher order of convergence $O\left(h^{4}\right)$ is obtained by the Runge-Kutta method of order 4. Comparison of the solutions of this example shows that the Runge-Kutta method of order 4 and the 4th-order Taylor method give a better solution than the Euler method.

Figure 2: $h=0.25$

References

[1] Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87-96.
[2] Atanassov, K. (1999) Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin.
[3] Buckely, J. J., \& Feuring, T. (2000) Fuzzy differential equations, Fuzzy Sets and Systems, 110, 43-54.
[4] Ben Amma, B., Melliani, S., \& Chadli, L. S. (2016) Numerical Solution Of Intuitionistic Fuzzy Differential Equations By Euler and Taylor Method, Notes on Intuitionistic Fuzzy Sets, 22(2), 71-86.
[5] Duraisamy, C., \& Usha, B. (2012) Numerical Solution of Differential Equation by RungeKutta Method of Order Four, European Journal of Scientific Research, 67, 324-337.
[6] Friedman, M., \& Kandel, A. (1999) Numerical solution of fuzzy differential equations, Fuzzy Sets and Systems, 105, 133-138.
[7] Melliani, S., Elomari, M., Chadli, L.S., \& Ettoussi, R. (2015) Intuitionistic fuzzy metric space, Notes on Intuitionistic Fuzzy Sets, 21(1), 43-53.
[8] Melliani, S., Elomari, M., Atraoui, M., \& Chadli, L. S. (2015) Intuitionistic fuzzy differential equation with nonlocal condition, Notes on Intuitionistic Fuzzy Sets, 21(4), 58-68.
[9] Ettoussi, R., Melliani, S., \& Chadli, L. S. (2015) Solution of Intuitionistic Fuzzy Differential Equations by successive approximation method, Notes on Intuitionistic Fuzzy Sets, 21(2), 51-62.
[10] Zadeh, L.A., (1965) Fuzzy sets, Inf. Control, 8, 338-353

