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Abstract: In the paper, two intuitionistic fuzzy modal operators from a new type are introduced
over intuitionistic fuzzy pairs. Some of the basic properties of the new operators are formulated
and checked.
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1 Introduction

The concept of an Intuitionistic Fuzzy Pair (IFP) was introduced in [4] independently with Z. Xu’s
paper [6], where he called the same object an intuitionistic fuzzy value. In a series of papers, a
lot of operations, relations and operators are defined over IFPs (see, e.g., [2]). A part of them are
given in Section 2 and they are used in Section 3, where two modal operators from a new type are
introduced and some of their basic properties are given.

2 Preliminaries

In [4], the pair (a,b) so that a,b,a + b € [0, 1] is called an IFP. For two pairs © = (a,b) and
y = (c, d), the following relations, operations and operators (and a lot of others) are introduced:
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r<yiff a <c and b >d,
r=yiffr <y and y < x,
x Ay = (min(a, ¢), max(b, d)),
x Vy = (max(a, c), min(b, d)),
r+y = (a+c—acbd),
z.y = (ac,b+d — bd),
a+cb+d

(@rebrdy
=<b7 >
(a,1—a),
:<1—b by,
Dyx={a+a(l—a—">0),b+ (1 —a)(l —a—D0)),
Fopr=(a+a(l—a—-"0),b+ (1 —a—0b)),
Ga,sr = (o, 5b),
Hypx = (aa,b+ (1 —a—0)),
H}, g2 = (aa, b+ B(1 — aa — b)),
Japr = (a+ a(l —a—Db),Sb),
T = (a-+a(l - a— Bb), 4b);
@, 500 = (@a+ 1, Bb+0),
where «, 3,7,0 € [0,1] and max(«, 8) + v+ < 1,
[©la 86,0 = (aa — b+, Bb— Ca+6),
where «, 3,7,9,e,¢ € [0,1],max(ae — (,f —¢)+ 7+ 0 < 1,
and min(a — (,f—¢)+~v+J >0,
Qa,py,0C = (aa + vb, Ba + 0b),
where o, 3,7,0 € [0,1]and o+ 5 < 1,7+ 6 < 1.

Q

3 Main results

Everywhere below we will use:
x = (a,b),
y = (¢, d).
Let us define the following two new operators:
Az = N{a,b) = {(a+b,0),
vz =v{a,b) =(0,a+0).

The geometrical interpretation of both operators is shown on Fig. 1.
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Figure 1. Geometrical interpretation of an element of an IFS.

We see immediately that

A(1,0) = A0,
v(L,0) = v(0,
vr <z < Az
The new operators have the following properties.
Proposition 1. For each IFP x:
(a) Ay x= Az,
(b) v Ax=vz.

Proof. (a) Let x be an IFP. Then
A=A (a,b) =A0,a+0b) ={a+0b,0) = Ax.

(b) The assertion is proved analogically. U

Therefore, there is an important difference in the behaviour of the new modal operators and
the intuitionistic fuzzy forms of the classical modal operators, that satisfy equalities 1)z = $ @
and O Ox = Ox (cf [2, 5]).

Between the two types of modal operators there are the following relationships.

Proposition 2. For each IFP x:
(a DAz < Az,
(b) Uvz=vlaz,
© Chz=A0%x,

d Ove>vdr.
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Proof. We check directly that:

OAz=0(a+b,0

( a+b1—a—-5b) <(1,0)=Aa,1—a)=A0zx,
Ove=00,a+b

{

{

0,1) =vi{a,1—a)=0x,
1,0) = Ala,1 —a) = A0z,

S Ax=<(a+b,0
Ovr=<(0,a+b

< = = =

=
=
=
=

This completes the proof. U

In [2] it is shown that operator D, extends both operators [J and <) because for each IFP x:
Oz = Dy and {2 = D;x, while operator F,, 3 extends operator D,,, because for each IFP x:
D, = fa1-a. Now, an extension of Proposition 2 has the following form.

Proposition 3. For each IFP x and for every o, § € [0, 1] so that a + b € [0, 1]:
@) Dy ANz <ADyx,
(b) Do V= VDaz,
(©) Foplx < AFypx,
d) Fapgv o >VEFupe.

More interesting is the case of the relationships between the new operators and operator G, 3.

Proposition 4. For each IFP x and for every o, 5 € [0, 1]:

(a) if a < 3, then
Gaﬁg Az S AGal75$,

Ga,ﬂ VT Z \V4 Gal,ﬁx7

(b) if a« > (3, then
Ga,,B A x 2 A Galﬁl‘,

CAVA B AVACHYY 2
Proposition 5. For each IFP x and for every a, § € [0, 1] so that a + b € [0, 1]:
(@) Hyop Ax < AHy g,
(b) Haop Vx> VHapx,
©) Jap Dz > AJypa,
d) Japg V<V,
(e) Hy s Ax < AHp sz,

(B) Hp 5V @2 VHg g,

33



(@) JopgLw = AJg e,

(h) J3 sV <7y a2
Proposition 6. For each IFP x:

@) ~A-x=vyu,

(b) -y ~z=Aux,

The relationships between the new operators and some of the operations over IFPs are the
following.

Proposition 7. For every two IFPs x and y:
@ Alz+y) <Az + Ay,
(b) Alzy) > Dax. ANy,
(c) A(zQy) = Az @Ay,
) v(z+y) =2ve+vy,
() V(zy) < vz .V,

) v(zQy) =vzQ@yy.

4 Conclusion

The so introduced intuitionistic fuzzy modal operators over IFPs can be modified (and this will
be an object of a nexr research of the author) for the case of Intuitionistic Fuzzy Sets (IFSs, see,
e.g., [1]) and interval-valued IFSs (see, e.g., [3]).

The new operators can have application in different areas as Data Mining, Decision making,
intercriteria analysis and others.
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