
95

Sixth Int. Conf. on IFSs, Varna, 13-14 Sept. 2002
NIFS 8 (2002), 3, 95-100

Intuitionistic Fuzzy Generalized Nets

in Analyzing Transaction Database Systems
with Continuous Deadlock Detection

Boyan Kolev1, Panagiotis Chountas2, Ilias Petrounias3

1 - Centre for Biomedical Engineering - Bulgarian Academy of Sciences,

Acad.G.Bonchev Str., Bl.105, Sofia-1113, BULGARIA, e-mail: bobby_kolev@yahoo.co.uk
2 - Mechatronics Group, Dept. of Computer Science, Univ. of Westminster,

London, HA1 3TP, UK, e-mail: chountp@wmin.ac.uk
3 - Department of Computation UMIST, Manchester PO BOX 88 M60 1QD, UK

Abstract

This paper presents an intuitionistic fuzzy generalized net model of a transaction database system with
continuous deadlock detection, which uses the 2PL protocol. We define probabilities for a transaction
to be granted a requested lock, held back by another transaction or deadlocked, which are integrated
with the intuitionistic fuzzy predicates. We can use this model to simulate transaction processing and
to analyze the efficient time for useful work and the time wasted in holding back transactions.

1. INTRODUCTION

The best known protocol that guarantees serializability in executing transactions is two-phase
locking (2PL) protocol. It concerns the positioning of the lock and unlock operations in every
transaction. A transaction follows the 2PL protocol if all locking operations precede the first
unlocking operation in the transaction [1]. Every transaction using this protocol can be
divided into two phases:

• a growing phase, in which it acquires all the locks but cannot release any lock and
• a shrinking phase, in which it releases all locks but cannot acquire any new lock.

 Using the 2PL protocol, however, we can cause a “deadlock” situation – two or more
transactions are each waiting for locks held by the other to be released. The most common
strategy for detecting deadlock situations is using the wait-for-graph (WFG), which describes
the transaction dependencies. In the WFG each node corresponds to a transaction and a
directed edge from node Ti and Tj exists if transaction Ti is waiting to lock an item that is
currently locked by Tj. In this construction deadlock exists if and only if the WFG contains a
cycle. The WFG could be checked continuously or periodically. With continuous deadlock
detection the WFG is checked at each blocking of a transaction (after adding an edge to the
graph). This algorithm is not so efficient for database systems, in which deadlocks occur
rarely. With periodic detection deadlocks can be checked periodically after adding a few
edges to the graph.

96

 We should differentiate between lock-owners (transactions that have performed at least
one lock) and non-lock-owners, because a lock owner is a potential participant in deadlock
situation.
 In [2] Ing-Ray Chen described the locking processes in a transaction database system
with 2PL protocol using stochastic Petri nets (SPN). Now we can describe them with
intuitionistic fuzzy generalized nets (IFGN, see [3]). In an IFGN, the probabilities in the SPN
can be transformed to intuitionistic fuzzy predicates, which let the tokens move from one
place to another. We can also assign characteristics to each token, thus making the
computation of probabilities more dynamic.

2. CONTINUOUS DEADLOCK DETECTION ALGORITHM

First we will build the state machine that describes the process for one transaction. The state
machine is described with the graph depicted in Fig. 1

Fig. 1

The meanings of the states used in the state machine are as follows:

L1 = the transaction is started
L2 = the transaction is requesting its first lock
L3 = the requested lock is granted
L4 = the transaction is blocked
L5 = the transaction is retrieving data items after the lock is granted
L6 = the transaction is retrieving data items after the lock is granted
L7 = the transaction is doing useful work

97

L9 = the transaction is requesting its subsequent lock
L10 = the transaction is releasing all of the locks and committing
L11 = the subsequent requested lock is granted
L12 = executing a deadlock detection algorithm
L13 = deadlock – the transaction is restarted
L8 = the transaction is blocked after a subsequent lock request

 We should define some local (for each transaction) and global (for the entire system)
characteristics, which are used in computing the probabilities for some events, as well as
some time characteristics, which determine how long the transaction should stay in a certain
state.

- Local characteristics:
o NL (number of locks) – the total number of locks for the transaction
o LC (lock counter) – the current number of locks (incremented at each lock

request)
- Global characteristics:

o N – total number of transactions
o NLO – number of lock owners
o NLdb – the total number of locks for the database
o NLLO – the total number of locks for all lock owners

- Time characteristics:
o Tlreq – service demand of CPU for processing a lock request
o Tlset – service demand of CPU for setting a lock
o TCPU – service demand of CPU per visit by a transaction
o Tlrel – service demand of CPU for releasing a lock
o Tdm – service demand of data manager per visit by a transaction
o Tnode – service demand of CPU for checking a node in the WFG
o Tlock – wait time for a lock by a blocked transaction (how long a transaction

should wait for a lock to be granted)
- Probabilities:

o P1 – probability that when a (non-lock-owner) transaction requests its first
lock, the lock is granted

o P2 – probability that when a (lock-owner) transaction requests a subsequent
lock, the lock is granted

o Pd – probability of deadlock

 The probabilities for moving from one state to another are as follows:

- From L2 to L3 – probability is P1
- From L2 to L4 – probability is 1 - P1
- From L9 to L11 – probability is P2
- From L9 to L12 – probability is 1 - P2
- From L12 to L13 – probability is Pd
- From L12 to L8 – probability is 1 - Pd

3. THE IFGN MODEL

Now we can create the topological structure of the IFGN model, using the algorithm
described in [4] (Fig. 2)

98

 The tokens enter the net at place L1 with characteristics NL and LC. Each token
corresponds to a transaction in the database system. NL and LC mean respectively number of
locks and lock counter. LC is initialized with 0 and is incremented at each lock request. We
should consider the characteristics NL and LC as input parameters as well as all time
characteristics. All other parameters are computed as follows:

Fig. 2

(1) N is the total number of tokens in all places of the IFGN.
(2) NLO is the total number of tokens in places L5, L6, L7, L8, L9, L11 and L12
(3) NLdb is the sum of the characteristics NL for all tokens in the IFGN
(4) NLLO is the sum of the characteristics LC for all tokens in the IFGN
(5) P1 = (NLdb – NLO) / NLdb
(6) P2 = (NLdb – NLLO) / (NLdb – LC)
(7) Pd = (1 – P2

LC-1) / (NLO – 1)

 In place L2 the transaction is requesting its first lock, where the token should stay there
Tlreq time units and then move to place L3 if the lock is granted (with probability P1) or to
place L4 if it isn’t (with probability 1-P1). After leaving L2 the characteristic LC of the token is
incremented. The intuitionistic fuzzy predicate matrix for transition Z2 is the following:

112

43
2 WWL

LL
r

¬
= ,

where the intuitionistic fuzzy predicate W1 is:
(8) W1 = (P1, 1-P1).

 After L7 a token should move either to L9 (if it needs another lock) or to L10 (if it has no
more locks to request for). The predicate matrix for transition Z6 is the following:

337

109
6 WWL

LL
r

¬
= ,

where the predicate W3 is:

99

 (9) W3 = true if LC < NL.

 After L9 a token should move either to L11 (if the requested lock is granted) or to L12 (if
it isn’t). Then the characteristic LC of the token is incremented. The intuitionistic fuzzy
predicate matrix for transition Z7 is the following:

229

1211
7 WWL

LL
r

¬
= ,

where the intuitionistic fuzzy predicate W2 is:

(10) W2 = (P2, 1-P2).

 After L12 a token should move either to L13 (if the transaction is deadlocked) or to L8 (if
it isn’t). The intuitionistic fuzzy predicate matrix for transition Z8 is the following:

dd12

813
8 WWL

LL
r

¬
= ,

where the intuitionistic fuzzy predicate Wd is:

(11) Wd = (Pd, 1-Pd).

 We should complicate the predicates in order to allow the tokens to stay in some of the
places for a certain period of time. The times for each place are as follows:

- in L2 a token stays Tlreq time units
- in L3 a token stays Tlset time units
- in L4 a token stays Tlock time units
- in L5 a token stays Tdm time units
- in L6 a token stays Tdm time units
- in L7 a token stays TCPU time units
- in L9 a token stays Tlreq time units
- in L10 a token stays NL.Tlrel time units
- in L11 a token stays Tlset time units
- in L12 a token stays Tdl time units, where Tdl is the service demand of CPU for

executing a continuous deadlock detection algorithm (Tdl = N.Tnode)
- in L8 a token stays Tlock time units
- in L13 a token stays LC.Tlrel time units

4. CONCLUSION

This model gives us the possibility to analyze the behavior of a transaction database system
using two-phase locking protocol with continuous deadlock detection. We can define some
performance characteristics, which are easily computable using the model:

- Xt – throughput of terminating transactions, i.e. number of successfully terminated
transactions per time unit

- Xa – throughput of aborting transactions, i.e. number of aborted transactions per
time unit

- UCPU – percentage of CPU time for doing useful computation on data items (when
a token is in place L7)

These performance characteristics could be used for comparison between database systems.

100

References

[1] Connoly T., C. Begg, A. Strachan. Database Systems: A Practical Approach to Design,

Implementation and management, Addison-Wesley, Harlow, England, 1998.
[2] Chen I. R. Stochastic Petri Net Analysis of Deadlock Detection Algorithms in Transaction

Database Systems with Dynamic Locking. The Computer Journal, Vol. 38, 1995, No. 9,
717-733.

[3] Atanassov K. Generalized nets. World Scientific, Singapore, 1991.
[4] Kolev, B. “An Algorithm for Transforming a Graph to a Generalized Net”. In: -

Proceeding of the First International Workshop on Generalized Nets, Sofia, 9 July 2000,
26-28.

[5] Atanassov K. Intuitionistic Fuzzy Sets, Springer-Verlag, Heidelberg, 1999.
[6] Pun K. H., G. G. Belford. Performance Study of Two-Phase Locking in Single-site

Database Systems, IEEE Trans. Software Eng., 13, 1311-1328.

