Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 27, 2021, No. 4, 44–54 DOI: 10.7546/nifs.2021.27.4.44-54

Intuitionistic *L*-fuzzy essential and closed submodules

P. K. Sharma¹, Kanchan² and Gagandeep Kaur³

¹ P.G. Department of Mathematics D.A.V. College Jalandhar, Punjab, India e-mail: pksharma@davjalandhar.com

² IKG Punjab Technical University Jalandhar, Punjab, India e-mail: kanchan4usoh@gmail.com

³ Department of Applied Science, GNDEC Ludhiana, Punjab, India e-mail: loteygagandeepkaur@gmail.com

Received: 27 May 2021

Accepted: 18 September 2021

Abstract: Let R be a commutative ring with identity and M be an R-module. An intuitionistic L-fuzzy submodule (ILFSM) C of an intuitionistic L-fuzzy module A of R-module M, is called an intuitionistic L-fuzzy essential submodule in A, if $C \cap B \neq \chi_{\{\theta\}}$ for any non-trivial ILFSM B of A. In this case we say that A is an essential extension of C. Also, if C has no proper essential extension in A, then C is called an intuitionistic L-fuzzy closed submodule in A. Further, for ILFSMs B, C of A, C is called complement of B in A if C is maximal with the property that $B \cap C = \chi_{\{\theta\}}$. We study these mentioned notations which are generalization of the notions of essential submodule, closed submodule and complement of a submodule in the intuitionistic L-fuzzy module theory. We prove many basic properties of both these concepts.

Keywords: Intuitionistic L-fuzzy submodule, Intuitionistic L-fuzzy essential submodule, Intuitionistic L-fuzzy closed submodule.

2020 Mathematics Subject Classification: 03F55, 16D10, 08A72.

1 Introduction

Let M be a unitary module over a commutative ring R with zero element θ . Recall that a submodule K of an R-module M is called an essential submodule of M denoted by $K \leq_e M$, if for every submodule N of M, $K \cap N = \{\theta\}$ implies that $N = \{\theta\}$. Equivalently, $K \cap N \neq \{\theta\}$ for all non-zero submodule N of M. In this case, M is called an essential extension of K. A submodule K of M is called closed in M written as $K \leq_e M$ if and only if M is the only essential extension of K, that is if N is any proper submodule of M such that $K \leq_e N$, then K = N. A submodule K of a module M is called complement for a submodule N of M if it is maximal with respect to the property that $K \cap N = \{\theta\}$. For more information about essential submodules, closed submodules and complement submodule, we refer to [1, 8, 15].

Atanassov and Stoeva [2] generalized the notion of L-fuzzy subset given by Goguen [5] to an intuitionistic L-fuzzy subset, where L is any complete lattice with a complete order reversing involution N. Wang and He in [14] and Deschrijver and Kerre in [4] studied the relationship between intuitionistic fuzzy sets and L-fuzzy sets and some extensions of fuzzy set theory. Palaniappan and others in [11] have studied intuitionistic L-fuzzy subgroups. Meena and Thomas in [10] have discussed the notion of intuitionistic L-fuzzy subrings. Sharma et al. [7, 12, 13] have discussed intuitionistic L-fuzzy submodules, intuitionistic L-fuzzy prime and primary submodule of a module. In this paper we introduce and study the concepts of intuitionistic L-fuzzy submodule of a module and establish some results.

2 Preliminaries

Throughout this paper R is a commutative ring with identity, M a unitary R-module and L stands for a complete lattice with least element 0 and greatest element 1. θ denotes the zero element of M. An element $\alpha \in L, 1 \neq \alpha$, is called a prime element in L if for all $a; b \in L$ if $a \wedge b \leq \alpha$ implies $a \leq \alpha$ or $b \leq \alpha$ (see [3]).

Definition 1 ([7]). Let (L, \leq) be a complete lattice with an evaluative order reversing operation $N : L \to L$. Let X be a non-empty set. An intuitionistic L-fuzzy set A in X is defined as an object of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$, where $\mu_A : X \to L$ and $\nu_A : X \to L$ define the degree of membership and the degree of non-membership for every $x \in X$ satisfying $\mu_A(x) \leq N(\nu_A(x))$. A complete order reversing involution is a map $N : L \to L$ such that:

- (i) $N(0_L) = 1_L$ and $N(1_L) = 0_L$;
- (ii) If $\alpha \leq \beta$, then $N(\beta) \leq N(\alpha)$;
- (iii) $N(N(\alpha)) = \alpha$;
- (iv) $N(\vee_{i=1}^{n}\alpha_{i}) = \wedge_{i=1}^{n}N(\alpha_{i})$ and $N(\wedge_{i=1}^{n}\alpha_{i}) = \vee_{i=1}^{n}N(\alpha_{i}).$

We also denote an intuitionistic L-fuzzy set by simply ILFS and the set of all ILFS's on X by ILFS(X).

Remark 1. When $\mu_A(x) = N(\nu_A(x))$, for all $x \in X$, then A is called L-fuzzy set. We use the notation $A = (\mu_A, \nu_A)$ to denote the intuitionistic L-fuzzy set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$.

For $A, B \in ILFS(X)$ we say $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$. Also, $A \subset B$ if and only if $A \subseteq B$ and $A \neq B$.

If $f: X \to Y$ is a mapping $A \in ILFS(X)$ and $B \in ILFS(Y)$, then $f(A) \in ILFS(Y)$ and $f^{-1}(B) \in ILFS(X)$ are defined as follows:

$$f(A)(y) = \begin{cases} (\sup\{\mu_A(x) \mid x \in f^{-1}(y)\}, \inf\{\nu_A(x) \mid x \in f^{-1}(y)\}), & \text{if } f^{-1}(y) \neq \emptyset\\ (0,1), & \text{otherwise} \end{cases}$$

 $\forall y \in Y. \text{ Also, } f^{-1}(B)(x) = (\mu_B(f(x)), \nu_B(f(x))), \forall x \in X.$

For $A \in ILFS(X)$ and $\alpha, \beta \in L$ with $\alpha \leq N(\beta)$, define $A_{(\alpha,\beta)} = \{x \in X \mid \mu_A(x) \geq \alpha, \nu_A(x) \leq \beta\}$. Then $A_{(\alpha,\beta)}$ is called the (α,β) -cut set of A. In particular, we denote $A_{(1,0)}$ by A_* . Of course, $A_* = \{x \in X \mid \mu_A(x) = 1 \text{ and } \nu_A(x) = 0\}$. The support of an *ILFS* A is denoted by A^* and is defined as $A^* = \{x \in X \mid \mu_A(x) > 0 \text{ and } \nu_A(x) < 1\}$.

Definition 2 ([12]). Let $A = (\mu_A, \nu_A)$ be an ILFS of X and $Y \subseteq X$. Then the intuitionistic L-fuzzy characteristic function $\chi_Y = (\mu_{\chi_Y}, \nu_{\chi_Y})$ on Y is defined as

$$\mu_{\chi_Y}(y) = \begin{cases} 1, & \text{if } y \in Y \\ 0, & \text{otherwise} \end{cases}; \quad \nu_{\chi_Y}(y) = \begin{cases} 0, & \text{if } y \in Y \\ 1, & \text{otherwise.} \end{cases}$$

The following are two very basic definitions given in [10] and [12].

Definition 3 ([10]). Let $A \in ILFS(R)$. Then A is called an intuitionistic L-fuzzy ideal (ILFI) of R if for all $x, y \in R$, the following are satisfied:

- (i) $\mu_A(x-y) \ge \mu_A(x) \land \mu_A(y);$
- (ii) $\mu_A(xy) \ge \mu_A(x) \lor \mu_A(y);$
- (iii) $\nu_A(x-y) \leq \nu_A(x) \vee \nu_A(y);$
- (iv) $\nu_A(xy) \leq \nu_A(x) \wedge \nu_A(y)$.

Definition 4 ([7, 12]). Let $A \in ILFS(M)$. Then A is called an intuitionistic L-fuzzy module (ILFM) of M if for all $x, y \in M, r \in R$, the following are satisfied:

- (i) $\mu_A(x-y) \ge \mu_A(x) \land \mu_A(y);$
- (ii) $\mu_A(rx) \ge \mu_A(x);$
- (*iii*) $\mu_A(\theta) = 1$;

- (iv) $\nu_A(x-y) \leq \nu_A(x) \vee \nu_A(y);$
- (v) $\nu_A(rx) \leq \nu_A(x);$
- (vi) $\nu_A(\theta) = 0.$

Let $IF_L(M)$ denote the set of all intuitionistic *L*-fuzzy *R*-modules of *M* and ILFI(R) denote the set of all intuitionistic *L*-fuzzy ideals of *R*. We note that when R = M, then $A \in IF_L(M)$ if and only if $\mu_A(\theta) = 1$, $\nu_A(\theta) = 0$ and $A \in ILFI(R)$.

If L is regular and $A, B \in IF_L(M)$, then A^*, B^* are submodules of M. Further we see that $(A+B)^* = A^* + B^*$ and $(A \cap B)^* = A^* \cap B^*$. Also, $A^* = \{\theta\}$ if and only if $A = \chi_{\{\theta\}}$ (see [7]).

3 Intuitionistic *L*-fuzzy essential submodules

In this section, we extend the concept of an essential submodule of an R-module in the intuitionistic L-fuzzy setting and prove some results.

Definition 5. Let M be an R-module and $A, C \in IF_L(M)$ be such that $\chi_{\{\theta\}} \neq C \subseteq A$. Then C is called an intuitionistic L-fuzzy essential submodule of A if $C \cap B \neq \chi_{\{\theta\}} \forall B \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq B \subseteq A$. We denote this by $C \trianglelefteq_e A$, and we also say that A is an intuitionistic L-fuzzy essential extension of C.

In particular, when $A = \chi_M$, then C is called an intuitionistic L-fuzzy essential submodule of M, written as $C \trianglelefteq_e \chi_M$ or $C \trianglelefteq_e M$, if $C \cap B \neq \chi_{\{\theta\}} \forall B \neq \chi_{\{\theta\}} \in IF_L(M)$.

Proposition 1. Let M be an R-module and $A, C \in IF_L(M)$ be such that $C \trianglelefteq_e A$. Then $C^* \trianglelefteq_e A^*$, but the converse is true when L is regular.

Proof. Firstly, let $A, C \in IF_L(M)$ be such that $C \leq_e A$. To show that $C^* \leq_e A^*$.

As $C \leq_e A$. Then $C \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M), \chi_{\{\theta\}} \neq D \subseteq A$.

Let $\{\theta\} \neq N$ be a submodule of M. Define $D = \chi_N$. Clearly, $\chi_{\{\theta\}} \neq D \in IF_L(M)$ and $D \subseteq A$ and therefore $C \cap D \neq \chi_{\{\theta\}}$. Therefore, there exists $\theta \neq x \in N$ such that $x \in (C \cap D)^*$ and so $(C \cap D)^* \neq \{\theta\}$, i.e., $C^* \cap D^* \neq \{\theta\}$. Hence $C^* \leq_e A^*$.

Conversely, suppose that L is regular and $C^* \leq_e A^*$. We want to show that $C \leq_e A$. For this we consider any $\chi_{\{\theta\}} \neq D \subseteq A$, where $D \in IF_L(M)$. Then $D^* \neq \{\theta\}$ and $D^* \subseteq A^*$. Therefore, $C^* \cap D^* \neq \{\theta\} \Rightarrow (C \cap D)^* \neq \{\theta\}$. This means that there exists $\theta \neq x \in M$ such that $x \in (C \cap D)^*$. Therefore, $C \cap D \neq \chi_{\{\theta\}}$. Hence $C \leq_e A$.

Example 1. Let N be an essential submodule of R-module M. Then the intuitionistic L-fuzzy submodule A of M defined by

$$\mu_A(x) = \begin{cases} 1, & \text{if } x = \theta \\ \alpha, & \text{if } x \in N - \{\theta\}; \\ 0, & \text{if } x \notin N \end{cases}, \quad \nu_A(x) = \begin{cases} 0, & \text{if } x = \theta \\ \beta, & \text{if } x \in N - \{\theta\}; \\ 1, & \text{if } x \notin N \end{cases}$$

where $\alpha, \beta \in L \setminus \{0, 1\}$ with $\alpha \leq N(\beta)$, is an intuitionistic L-fuzzy essential submodule of M.

Example 2. Let $L = \{0, a, b, 1\}$ be a diamond lattice with $a \lor b = 1$ and $a \land b = 0$ so that N(a) = b and N(b) = a. Consider $M = \{0, 1, 2, ..., 11\}$ under addition and multiplication module 12 as Z-module. Consider $A, B, C \in IF_L(M)$ as follows:

$$\mu_A(x) = \begin{cases} 1, & \text{if } x = 0\\ a, & \text{if } x \in \{4, 8\}\\ 0, & \text{if } x \notin \{0, 4, 8\} \end{cases}; \quad \nu_A(x) = \begin{cases} 0, & \text{if } x = 0\\ b, & \text{if } x \in \{4, 8\} \end{cases}; \\ 1, & \text{if } x \notin \{0, 4, 8\} \end{cases}$$
$$\mu_B(x) = \begin{cases} 1, & \text{if } x = 0\\ a, & \text{if } x \in \{2, 4, 6, 8, 10\}\\ 0, & \text{if } x \notin \{0, 2, 4, 6, 8, 10\} \end{cases}; \quad \nu_B(x) = \begin{cases} 0, & \text{if } x = 0\\ b, & \text{if } x \in \{2, 4, 6, 8, 10\}\\ 1, & \text{if } x \notin \{0, 2, 4, 6, 8, 10\} \end{cases}.$$

Here $A \subseteq B$ *but* A *is not essential in* B. *As there is* $\chi_{\{\theta\}} \neq C \in IF_L(M)$ *such that* $C \subseteq B$ *and* $A \cap C = \chi_{\{\theta\}}$, *where*

$$\mu_C(x) = \begin{cases} 1, & \text{if } x = 0\\ a, & \text{if } x = 6\\ 0, & \text{if } x \notin \{0, 6\} \end{cases}; \quad \nu_C(x) = \begin{cases} 0, & \text{if } x = 0\\ b, & \text{if } x = 6\\ 1, & \text{if } x \notin \{0, 6\} \end{cases}$$

Also, $B \leq_e M$ but A is not essential in M.

Theorem 1. Let L be regular, $A, C \in IF_L(M)$ be such that $\chi_{\{\theta\}} \neq C \subseteq A$. Then C is an intuitionistic L-fuzzy essential submodule of A if and only if for each $\theta \neq x \in M$, with $x \in A^*$, there exists $r \in R$ such that $rx \neq \theta$ and $rx \in C^*$.

Proof. Assume that for each $\theta \neq x \in M$ with $x \in A^*$ there exists $0 \neq r \in R$ such that $rx \in C^*$. We want to show that $C \leq_e A$. Take any $B \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq B \subseteq A$. We will show that $C \cap B \neq \chi_{\{\theta\}}$.

Let $x \in M$ be such that $x \neq \theta$ and $x \in B^*$. As $B \subseteq A$, therefore $B^* \subseteq A^*$ implies that $x \in A^*$. From the given, there exists $r \neq 0 \in R$ such that $rx \neq 0$ and $rx \in C^*$, where $\chi_{\{\theta\}} \neq C \subseteq B$. Therefore, $\mu_B(rx) \geq \mu_C(rx) > 0$ and $\nu_B(rx) \leq \nu_C(rx) < 1 \Rightarrow rx \in B^*$. Thus, $rx \in C^* \cap B^* = (C \cap B)^*$ and so $C \cap B \neq \chi_{\{\theta\}}$.

Conversely, suppose that $C \leq_e A$. Let $\theta \neq x \in M$ with $x \in A^*$. To show that there exists $r \in R$ such that $rx \in C^*$. Now for every $r \in R$, we have $\mu_A(rx) \geq \mu_A(x) > 0$ and $\nu_A(rx) \leq \nu_A(x) < 1 \Rightarrow rx \in A^*$.

Consider the non-zero submodule N = Rx of M. Define $B = A|_N$, then $B \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq B \subseteq A$. As $C \trianglelefteq_e A$, therefore $C \cap B \neq \chi_{\{\theta\}}$, so $(C \cap B)^* \neq \{\theta\}$, i.e., $C^* \cap B^* \neq \{\theta\}$ and therefore there exists $\theta \neq y \in M$ such that $y \in B^*$ and $y \in C^*$. But $B^* = N = Rx$. Thus, there exists $0 \neq r \in R$ such that $rx = y \in C^*$. This completes the proof. \Box

Theorem 2. Let $A, B, C \in IF_L(M)$ be such that $C \subseteq B \subseteq A$. Then $C \trianglelefteq_e A$ if and only if $C \trianglelefteq_e B$ and $B \trianglelefteq_e A$.

Proof. Assume that $C \leq_e A$. Then $C \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq D \subseteq A$.

Since $B \subseteq A$, it follows that $C \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq D \subseteq B$. $\Rightarrow C \leq_e B$.

Also since $C \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq D \subseteq A$ and also since $C \subseteq B$ we get $B \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq D \subseteq A$. Hence $B \leq_e A$.

Conversely, suppose that $C \trianglelefteq_e B$ and $B \trianglelefteq_e A$. We want to show that $C \trianglelefteq_e A$.

Since $B \leq_e A$ we have $B \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq D \subseteq A$. Then $B \cap D \in IF_L(M)$ satisfies $\chi_{\{\theta\}} \neq B \cap D \subseteq B$ and therefore, since $C \leq_e B$, we get $C \cap (B \cap D) \neq \chi_{\{\theta\}}$. Since $C \subseteq B$ it follows that $C \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M)$ such that $\chi_{\{\theta\}} \neq D \subseteq A$. Therefore $C \leq_e A$.

Theorem 3. Let $C_1, C_2, A_1, A_2 \in IF_L(M)$. If $C_1 \leq_e A_1$ and $C_2 \leq_e A_2$, then $C_1 \cap C_2 \leq_e A_1 \cap A_2$.

Proof. Let $D \in IF_L(M)$ be such that $\chi_{\{\theta\}} \neq D \subseteq A_1 \cap A_2 \subseteq A_2$. Then since $C_2 \leq_e A_2$ we have $C_2 \cap D \neq \chi_{\{\theta\}}$. Since $D \subseteq A_1$, we get $\chi_{\{\theta\}} \neq C_2 \cap D \subseteq A_1$. Therefore since $C_1 \leq_e A_1$, we get $C_1 \cap (C_2 \cap D) \neq \chi_{\{\theta\}}$. Thus we get $(C_1 \cap C_2) \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M), \chi_{\{\theta\}} \neq D \subseteq A_1 \cap A_2$. \Box

Remark 2. Let $C_1, C_2, A \in IF_L(M)$. If $C_1 \leq_e A$ and $C_2 \leq_e A$, then $C_1 \cap C_2 \leq_e A$.

Theorem 4. Let L be regular $C, A \in IF_L(M)$ where $C \subseteq A$. Let $f : N \to M$ be a module homomorphism such that $f(B) \subseteq A$ where $B \in IF_L(N)$. If $C \leq_e A$ then $f^{-1}(C) \leq_e B$.

Proof. Given $C \leq_e A$. We want to show that $f^{-1}(C) \leq_e B$. For this we have to show that $f^{-1}(C) \cap D \neq \chi_{\{\theta\}}, \forall D \in IF_L(M), \chi_{\{\theta\}} \neq D \subseteq B$. That is to show that for given $D \in IF_L(M), \chi_{\{\theta\}} \neq D \subseteq B$. That is to show that for given $D \in IF_L(M), \chi_{\{\theta\}} \neq D \subseteq B$, there exists $\theta \neq x \in N$ such that $\mu_{f^{-1}(C)\cap D}(x) \neq 0$ and $\nu_{f^{-1}(C)\cap D}(x) \neq 1$; i.e., $\mu_{f^{-1}(C)}(x) \wedge \mu_D(x) \neq 0$ and $\nu_{f^{-1}(C)}(x) \vee \nu_D(x) \neq 1$, i.e., $\mu_C(f(x)) \wedge \mu_D(x) \neq 0$ and $\nu_{C}(f(x)) \vee \nu_D(x) \neq 1$.

Now, we claim that if $f(D) = \chi_{\{\theta\}}$, then $D \subseteq f^{-1}(C)$.

Let for all $z \in M$ with $f^{-1}(z) \neq \emptyset$, we have $\mu_{f(D)}(z) = \mu_{\chi_{\{\theta\}}}(z)$ and $\nu_{f(D)}(z) = \nu_{\chi_{\{\theta\}}}(z)$. Therefore, we have:

$$\vee \{\mu_D(x) | x \in N, f(x) = z\} = \begin{cases} 1, & \text{if } z = \theta \\ 0, & \text{if } z \neq \theta \end{cases}$$

 $\Rightarrow \lor \{\mu_D(x) \mid x \in N, f(x) = z\} = 0 \text{ if } z \neq \theta$ $\Rightarrow \{\mu_D(x) \mid x \in N, f(x) = z\} = \{0\} \text{ if } z \neq \theta$

 $\Rightarrow \mu_D(x) = 0 \text{ if } f(x) \neq \theta. \text{ Similarly, we can show that } \nu_D(x) = 1 \text{ if } f(x) \neq \theta. \text{ Thus we have } \\ \mu_C(f(x)) = \mu_C(\theta) = 1 \text{ and } \nu_C(f(x)) = \nu_C(\theta) = 0 \text{ if } f(x) = \theta. \text{ Therefore, } \mu_D(x) \leq \mu_C(f(x)) \\ \text{and } \nu_D(x) \geq \nu_C(f(x)), \forall x \in N, \text{ i.e., } \mu_D(x) \leq \mu_{f^{-1}(C)}(x) \text{ and } \nu_D(x) \geq \nu_{f^{-1}(C)}(x), \forall x \in N. \\ \text{Therefore, in this case we have } D \subseteq f^{-1}(C) \text{ and so we get } f^{-1}(C) \cap D = D \neq \chi_{\{\theta\}}. \end{cases}$

If $f(D) \neq \chi_{\{\theta\}}$, to prove that $f^{-1}(C) \cap D \neq \chi_{\{\theta\}}$ for $D \in IF_L(M)$, $\chi_{\{\theta\}} \neq D \subseteq B$, we have $D \subseteq B \Rightarrow f(D) \subseteq f(B) \Rightarrow f(D) \subseteq A$ (as $f(B) \subseteq A$).

Therefore, if $f(D) \neq \chi_{\{\theta\}}$, since $C \leq_e A$ we get $C \cap f(D) \neq \chi_{\{\theta\}}$. From this we get that there exist some $x \neq \theta \in M$ such that $\mu_{f(D)}(x) \neq 0$ and $\nu_{f(D)}(x) \neq 1$, which further implies that there exists some $y \in N$ such that f(y) = x and $\mu_D(y) \neq 0$; $\nu_D(y) \neq 1$. Thus for this y we have $\mu_{C\cap f(D)}(y) \neq 0$ and $\nu_{C\cap f(D)}(y) \neq 1$, i.e., $\mu_C(f(y)) \wedge \mu_{f(D)}(f(y)) \neq 0$ and $\nu_C(f(y)) \vee \nu_{f(D)}(f(y)) \neq 1$. This implies that both $\mu_C(f(y)) > 0$, $\nu_C(f(y)) < 1$ and $\mu_{f(D)}(f(y)) > 0$, $\nu_{f(D)}(f(y)) < 1$. Since L is regular, we get $\mu_{f^{-1}(C)}(y) > 0$, $\nu_{f^{-1}(C)}(y) < 1$ and $\mu_D(y) > 0$, $\nu_D(y) < 1 \Rightarrow \mu_{f^{-1}(C)}(y) \wedge \mu_D(y) \neq 0$ and $\nu_{f^{-1}(C)}(y) \vee \nu_D(y) \neq 1 \Rightarrow f^{-1}(C) \cap D \neq \chi_{\{\theta\}}$. \Box

Theorem 5. Let L be a regular and $C_1, C_2, A_1, A_2 \in IF_L(M)$. If $C_i \leq_e A_i$, i = 1, 2. If $C_1 \cap C_2 = \chi_{\{\theta\}}$, then $A_1 \cap A_2 = \chi_{\{\theta\}}$ and $C_1 \oplus C_2 \leq_e A_1 \oplus A_2$.

Proof. Since $C_i \leq_e A_i$, i = 1, 2. Then by proposition (3.2) we get $C_i^* \leq_e A_i^*$, i = 1, 2. Also because $C_1 \cap C_2 = \chi_{\{\theta\}}$, the sum $C_1 + C_2$ is the direct sum $C_1 \oplus C_2$. Since $C_1 \cap C_2 \leq_e A_1 \cap A_2$, it follows that $A_1 \cap A_2 \neq \chi_{\{\theta\}}$ and so the sum $A_1 + A_2$ is also the direct sum $A_1 \oplus A_2$. Therefore, since L is regular we have the direct sum of R-modules $C_1^* \oplus C_2^*$ and $A_1^* \oplus A_2^*$. Since $C_i^* \leq_e A_i^*$, i = 1, 2 we get $C_1^* \oplus_e C_2^* \leq A_1^* \oplus A_2^*$. From this it follows that $C_1 \oplus C_2 \leq_e A_1 \oplus A_2$.

Remark 3. Let L be a regular and $C_1, C_2, A \in IF_L(M)$. If $C_i \leq_e A$, i = 1, 2. If $C_1 \cap C_2 = \chi_{\{\theta\}}$, then $C_1 \oplus C_2 \leq_e A$.

Proposition 2. Let $A, B \in IFI(R)$. Let B be an intuitionistic L-fuzzy prime ideal of R such that A is not subset of B. Then $A \leq_e R$.

Proof. Let $C \in IFI(R)$ be such that $A \cap C \subseteq B$. Since $AC \subseteq A \cap C \subseteq B$ implies $AC \subseteq B$. As B is intuitionistic L-fuzzy prime ideal of R. Therefore either $A \subseteq B$ or $C \subseteq B$. But given that A is not a subset of B, so $C \subseteq B$ which implies that $A \leq_e R$. This completes the proof. \Box

4 Complement of an intuitionistic *L*-fuzzy module

In this section we extend the concept of a complement of a submodule in the intuitionistic *L*-fuzzy setting and prove some results.

Definition 6. Let M be an R-module and $A, B, C \in IF_L(M)$ be such that $B \subseteq A$. Then C is called an intuitionistic L-fuzzy complement of B in A if $C \subseteq A$ and C is maximal with the property that $B \cap C = \chi_{\{\theta\}}$. We say that C is complement of B in A.

Theorem 6. Let *L* be regular and *M* be an *R*-module. If *C* is complement of *B* in *A*. Then C^* is complement of B^* in A^* .

Proof. Since C is complement of B in A. Therefore, C is the maximal intuitionistic L-fuzzy submodule of A with the property that $B \cap C = \chi_{\{\theta\}}$. Then $B^* \cap C^* = \{\theta\}$. It remains to show that C^* is the maximal one with this property. Let N be a submodule of M such that $C^* \subseteq N$ and $B^* \cap N = \{\theta\}$. Since $\mu_C(x) > 0$, $\nu_C(x) < 1$ for all $x \in C^*$. So let $p = \inf\{\mu_C(x) \mid x \in C^*\}$ and $q = \sup\{\nu_C(x) \mid x \in C^*\}$. Then $p, q \in L \setminus \{0, 1\}$ such that $p \leq N(q)$. Choose $\alpha, \beta \in L \setminus \{0, 1\}$ such that $0 < \alpha \leq p$ and $q \leq \beta < 1$. Define $D \in ILFS$ as follows:

$$\mu_D(x) = \begin{cases} \mu_C(x), & \text{if } x \in C^* \\ \alpha, & \text{if } x \in N - C^* ; \\ 0, & \text{if } x \notin N \end{cases} \quad \nu_D(x) = \begin{cases} \nu_C(x), & \text{if } x \in C^* \\ \beta, & \text{if } x \in N - C^* \\ 1, & \text{if } x \notin N \end{cases}$$

Clearly, $D \in IF_L(M)$ such that $C \subseteq D$ and so $D^* = N$. Now $B^* \cap N = \{\theta\} \Rightarrow B^* \cap D^* = \{\theta\}$. This implies $(B \cap D)^* = \{\theta\} \Rightarrow B \cap D = \chi_{\{\theta\}}$. But C is maximal with this property that $B \cap C = \chi_{\{\theta\}}$ so C = D and consequently $C^* = D^* = N$. Hence, C^* is complement of B^* in A^* .

Remark 4. The converse of the above theorem is not true. If for any $A, B, C \in IF_L(M)$. The submodule C^* is complement of B^* in A^* . Then C need not be complement of B in A.

Example 3. Let L = [0, 1] and let the module $M = Z_6 = \{0, 1, 2, 3, 4, 5\}$ be a module over the ring Z of integers. Define ILFSs A, B, C of M as follows:

$$\mu_A(x) = \begin{cases} 1, & \text{if } x = 0\\ 0.5, & \text{if } x = 3\\ 0, & \text{if } x \in \{1, 2, 4, 5\} \end{cases}; \quad \nu_A(x) = \begin{cases} 0, & \text{if } x = 0\\ 0.3, & \text{if } x = 3\\ 1, & \text{if } x \in \{1, 2, 4, 5\} \end{cases};$$
$$\mu_B(x) = \begin{cases} 1, & \text{if } x = 0\\ 0, & \text{if } x \neq 0 \end{cases}; \quad \nu_B(x) = \begin{cases} 0, & \text{if } x = 0\\ 1, & \text{if } x \neq 0 \end{cases};$$
$$\mu_C(x) = \begin{cases} 1, & \text{if } x = 0\\ 0.6, & \text{if } x \in \{2, 4\} \end{cases}; \quad \nu_C(x) = \begin{cases} 0, & \text{if } x = 0\\ 0.3, & \text{if } x \in \{2, 4\} \\ 1, & \text{if } x \in \{1, 3, 5\} \end{cases}$$

It is easy to check that $A, B, C \in IF_L(M)$ such that $A^* = \{0,3\}, B^* = \{0\}$ and $C^* = \{0,2,4\}$. Clearly, $A^* \cap C^* = \{0\} = B^*$ and C^* is maximal with this property so C^* is complement of B^* in A^* . But C is not complement of B in A, for if we define the ILFS D on M as follows:

$$\mu_D(x) = \begin{cases} 1, & \text{if } x = 0\\ 0.7, & \text{if } x \in \{2,4\} \\ 0, & \text{if } x \in \{1,3,5\} \end{cases}, \quad \nu_D(x) = \begin{cases} 0, & \text{if } x = 0\\ 0.1, & \text{if } x \in \{2,4\} \\ 1, & \text{if } x \in \{1,3,5\} \end{cases}$$

Then $D \in IF_L(M)$ with $C \subseteq D$ and $D \cap B = \chi_{\{0\}}$. This shows that C is not maximal with the property that $C \cap B = \chi_{\{0\}}$.

5 Intuitionistic *L*-fuzzy closed submodules

In this section we extend the concept of closed submodule in the intuitionistic L-fuzzy setting.

Definition 7. Let M be an R-module and $A, B, C \in IF_L(M)$. Then C is said to be an intuitionistic L-fuzzy closed submodule of A if $C \subseteq A$ and C has no non-constant (proper) intuitionistic L-fuzzy essential extension in A, i.e., if $\chi_{\{\theta\}} \neq B \subset A$ such that $C \leq_e B \Rightarrow B = C$. We write $C \leq_c A$ when C is an intuitionistic L-fuzzy closed submodule of A.

Remark 5. Note that $\chi_{\{\theta\}}$ and A are always intuitionistic L-fuzzy closed submodules of A.

Theorem 7. Let *L* be regular and *M* be an *R*-module. If $A, C \in IF_L(M)$ are such that $C \leq_c A$, then $C^* \leq_c A^*$.

Proof. Firstly, let $C \leq_c A$. To show that $C^* \leq_c A^*$. If possible, let N be a proper submodule of A^* such that $C^* \leq_e N$. Then we will show that $N = C^*$.

Define $B \in ILFS(M)$ as

$$\mu_B(x) = \begin{cases} 1, & \text{if } x \in N \\ 0, & \text{if } x \notin N \end{cases}; \quad \nu_B(x) = \begin{cases} 0, & \text{if } x \in N \\ 1, & \text{if } x \notin N. \end{cases}$$

It is clear that $B \in IF_L(M)$ such that $B \subseteq A$, i.e., B is a proper intuitionistic L-fuzzy submodule of A. Also, $B^* = N$. But $C^* \trianglelefteq_e N$ implies that $C^* \trianglelefteq_e B^*$ and therefore $C \trianglelefteq_e B$. Also, $C \trianglelefteq_c A$. Therefore, we have C = B which implies that $C^* = B^* = N$.

Remark 6. The converse of the above theorem need not be true. See the following example.

Example 4. Consider L, M, A as in Example 3. Here, we notice that $B^* = \{0\} \leq_c A^*$, but B is not intuitionistic L-fuzzy closed in A.

Theorem 8. Let $A, B, C, D \in IF_l(M)$ such that $B \subseteq C \subseteq D \subseteq A$ and $B \trianglelefteq_c C$ and $C \trianglelefteq_c D$, then $B \trianglelefteq_c D$.

Proof. Since $B \trianglelefteq_c C \Rightarrow B \trianglelefteq_e C$ and if $\chi_{\{\theta\}} \neq F \subset C \in IF_L(M)$ such that $B \trianglelefteq_e F$, then B = F (1).

Also, since $C \leq_c D \Rightarrow C \leq_e D$ and if $\chi_{\{\theta\}} \neq G \subset D \in IF_L(M)$ such that $C \leq_e G$, then C = G (2).

Now, as $B \leq_e C$ and $C \leq_e D$, then by prop. (3.6), we get $B \leq_e D$.

Further, if $\chi_{\{\theta\}} \neq H \subset D \in IF_L(M)$ such that $B \leq_e H$, then from (1), we get that B = H. Hence $B \leq_e D$.

Proposition 3. Let *L* be regular and *M* be an *R*-module. If $A, C \in IF_L(M)$, then *C* is intuitionistic *L*-fuzzy closed submodule of *A* if and only if *C* is intuitionistic *L*-fuzzy complement of some $B \in IF_L(M)$ such that $B \subseteq A$.

Proof. Firstly, let $C \leq_c A$. Then by Theorem (5.3), we have $C^* \leq_c A^*$. Hence C^* is complement of some submodule N, where N is a proper submodule of A^* . Let $B = \chi_N \in ILFS(M)$. Clearly, $B \in IF_L(M)$ is such that $B \subseteq A$ and $B^* = N$. So C^* is complement of B^* . Hence, $B^* \cap C^* = \{\theta\}$ and so $B \cap C = \chi_{\{\theta\}}$. Next we claim that C is maximal with this property.

Suppose that $D \in ILFS(M)$ is such that $D \subseteq A$ and C is intuitionistic L-fuzzy submodule of D, i.e., $C \subseteq D$ such that $B \cap D = \chi_{\{\theta\}}$. So $B^* \cap D^* = \{\theta\}$. But C^* is a submodule of D^* and C^* is a complement of B^* . So $C^* = D^*$. Thus, C = D and hence C is an intuitionistic L-fuzzy complement of B.

Conversely, let C be intuitionistic L-fuzzy complement of B in A. We want to show that C is intuitionistic L-fuzzy closed submodule of A. Suppose that $C \leq_c D$, where $D \in IF_L(M)$ is such that $D \subseteq A$. Then $C \cap B \leq_c D \cap B$ (by Corollary (3.8)). Hence $\chi_{\{\theta\}} \leq_c D \cap B$ and so $D \cap B = \chi_{\{\theta\}}$. But C is an intuitionistic L-fuzzy submodule of D and C is intuitionistic L-fuzzy complement of B, hence D = C. Thus C is intuitionistic L-fuzzy closed submodule of A.

Remark 7. If L is regular and M is an R-module such that C is intuitionistic L-fuzzy closed submodule of A. Then C being an intuitionistic L-fuzzy complement of some B in A does not imply that B is intuitionistic L-fuzzy complement of C in A. See the following example.

Example 5. Consider L, M, A as in Example 3. Interchange B and C. We note that $C = \chi_{\{\theta\}}$ is an intuitionistic L-fuzzy closed submodule of A. Also, C is intuitionistic L-fuzzy complement of B in A. But B is not intuitionistic L-fuzzy complement of C in A.

6 Conclusion

In this paper, we have introduced the notion of essential submodule, closed submodule and complement of submodule of a module in the intuitionistic L-fuzzy environment to develop the theory of intuitionistic L-fuzzy modules. It has been shown that the converse of many results which hold in general complete lattice L hold only in the case when the lattice L is regular. We have shown that for the existence of complement of an intuitionistic L-fuzzy submodule C, the lattice L should be regular and that C must be closed.

Acknowledgements

The second author would like to thank IKG PT University, Jalandhar for providing the opportunity to do research work.

References

- [1] Anderson, F. W., & Fuller, K. R. (1992). *Rings and Categories of Modules*. Second edition, Springer Verlag.
- [2] Atanassov, K., & Stoeva, S. (1984). Intuitionistic *L*-fuzzy sets. *Cybernetics and System Research*, Vol. 2, Elsevier Sci. Publ. Amsterdam, 539–540.
- [3] Birkhoff, G. (1967). Lattice Theory. American Math. Soci. Coll. Publ., Rhode Island.
- [4] Deschrijver, G., & Kerre, E. E. (2003). On the relationship between some extensionss of fuzzy set theory. *Fuzzy Sets and Systems*, 133, 227–235.
- [5] Goguen, J. (1967). *L*-fuzzy sets. *Journal of Mathematical Analysis and Applications*, 18, 145–174.
- [6] Isaac, P. (2007). Essential *L*-fuzzy submodules of an *L*-module. *Journal of Fuzzy Mathematics*, 15(2), 355–362.
- [7] Kanchan, Sharma, P. K., & Pathania, D. S. (2020). Intuitionistic *L*-fuzzy submodules. *Advances in Fuzzy Sets and Systems*, 25(2), 123–142.

- [8] Kasch, F. (1982). Modules and Rings. Academic Press, London.
- [9] Marhon, H. K., & Khalaf, H. Y. (2020). Some Properties of the Essential Fuzzy and Closed Fuzzy Submodules. *Iraqi Journal of Science*, 61(4), 890–897.
- [10] Meena, K., & Thomas, K. V. (2011). Intuitionistic L-fuzzy Subrings. International Mathematics Forum, 6(52), 2561–2572.
- [11] Palaniappan, N., Naganathan, S., & Arjunan, K. (2009). A study on Intuitionistic *L*-fuzzy Subgroups. *Applied Mathematics Sciences*, 3(53), 2619–2624.
- [12] Sharma, P. K., & Kanchan. (2018). On intuitionistic L-fuzzy prime submodules. Annals of Fuzzy Mathematics and Informatics, 16(1), 87–97.
- [13] Sharma, P. K., & Kanchan. (2020). On intuitionistic *L*-fuzzy primary and *P*-primary submodules. *Malaya Journal of Matematik*, 8(4), 1417–1426.
- [14] Wang, G. J., & He, Y. Y. (2000). Intuitionistic fuzzy sets and *L*-fuzzy sets. *Fuzzy Sets and Systems*, 110, 271–274.
- [15] Wisbauer, R. (1991). Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia.