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Abstract: Let R be a commutative ring with identity and M be an R-module. An intuitionistic
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extension in A, then C is called an intuitionistic L-fuzzy closed submodule in A. Further, for
ILFSMs B,C of A, C is called complement of B in A if C is maximal with the property that
B ∩ C = χ{θ}. We study these mentioned notations which are generalization of the notions
of essential submodule, closed submodule and complement of a submodule in the intuitionistic
L-fuzzy module theory. We prove many basic properties of both these concepts.
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1 Introduction

Let M be a unitary module over a commutative ring R with zero element θ. Recall that a
submodule K of an R-module M is called an essential submodule of M denoted by K EeM , if
for every submodule N of M , K ∩N = {θ} implies that N = {θ}. Equivalently, K ∩N 6= {θ}
for all non-zero submodule N of M . In this case, M is called an essential extension of K. A
submodule K of M is called closed inM written as KEcM if and only if M is the only essential
extension of K, that is if N is any proper submodule of M such that K Ee N , then K = N . A
submoduleK of a moduleM is called complement for a submoduleN ofM if it is maximal with
respect to the property that K ∩ N = {θ}. For more information about essential submodules,
closed submodules and complement submodule, we refer to [1, 8, 15].

Atanassov and Stoeva [2] generalized the notion of L-fuzzy subset given by Goguen [5] to
an intuitionistic L-fuzzy subset, where L is any complete lattice with a complete order reversing
involution N . Wang and He in [14] and Deschrijver and Kerre in [4] studied the relationship
between intuitionistic fuzzy sets and L-fuzzy sets and some extensions of fuzzy set theory.
Palaniappan and others in [11] have studied intuitionistic L-fuzzy subgroups. Meena and Thomas
in [10] have discussed the notion of intuitionistic L-fuzzy subrings. Sharma et al. [7,12,13] have
discussed intuitionistic L-fuzzy submodules, intuitionistic L-fuzzy prime and primary submodule
of a module. In this paper we introduce and study the concepts of intuitionistic L-fuzzy essential
submodule, intuitionistic L-fuzzy closed submodule and the complement of intuitionistic L-fuzzy
submodule of a module and establish some results.

2 Preliminaries

Throughout this paper R is a commutative ring with identity, M a unitary R-module and L stands
for a complete lattice with least element 0 and greatest element 1. θ denotes the zero element of
M . An element α ∈ L, 1 6= α, is called a prime element in L if for all a; b ∈ L if a ∧ b ≤ α

implies a ≤ α or b ≤ α (see [3]).

Definition 1 ([7]). Let (L,≤) be a complete lattice with an evaluative order reversing operation
N : L → L. Let X be a non-empty set. An intuitionistic L-fuzzy set A in X is defined as an
object of the form A = {〈x, µA(x), νA(x)〉 | x ∈ X}, where µA : X → L and νA : X → L

define the degree of membership and the degree of non-membership for every x ∈ X satisfying
µA(x) ≤ N(νA(x)). A complete order reversing involution is a map N : L→ L such that:

(i) N(0L) = 1L and N(1L) = 0L;

(ii) If α ≤ β, then N(β) ≤ N(α);

(iii) N(N(α)) = α;

(iv) N(∨ni=1αi) = ∧ni=1N(αi) and N(∧ni=1αi) = ∨ni=1N(αi).

We also denote an intuitionistic L-fuzzy set by simply ILFS and the set of all ILFS’s on X
by ILFS(X).
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Remark 1. When µA(x) = N(νA(x)), for all x ∈ X , then A is called L-fuzzy set. We use the
notation A = (µA, νA) to denote the intuitionistic L-fuzzy set A = {〈x, µA(x), νA(x)〉 | x ∈ X}.

For A,B ∈ ILFS(X) we say A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for
all x ∈ X . Also, A ⊂ B if and only if A ⊆ B and A 6= B.

If f : X → Y is a mapping A ∈ ILFS(X) and B ∈ ILFS(Y ), then f(A) ∈ ILFS(Y ) and
f−1(B) ∈ ILFS(X) are defined as follows:

f(A)(y) =

(sup{µA(x) | x ∈ f−1(y)}, inf{νA(x)|x ∈ f−1(y)}), if f−1(y) 6= ∅
(0, 1), otherwise

∀y ∈ Y. Also, f−1(B)(x) = (µB(f(x)), νB(f(x))), ∀x ∈ X.

For A ∈ ILFS(X) and α, β ∈ L with α ≤ N(β), define A(α,β) = {x ∈ X | µA(x) ≥ α,

νA(x) ≤ β}. Then A(α,β) is called the (α, β)-cut set of A. In particular, we denote A(1,0) by A∗.
Of course, A∗ = {x ∈ X | µA(x) = 1 and νA(x) = 0}. The support of an ILFS A is denoted by
A∗ and is defined as A∗ = {x ∈ X | µA(x) > 0 and νA(x) < 1}.

Definition 2 ( [12]). Let A = (µA, νA) be an ILFS of X and Y ⊆ X . Then the intuitionistic
L-fuzzy characteristic function χY = (µχY , νχY ) on Y is defined as

µχY (y) =

1, if y ∈ Y
0, otherwise

; νχY (y) =

0, if y ∈ Y
1, otherwise.

The following are two very basic definitions given in [10] and [12].

Definition 3 ([10]). Let A ∈ ILFS(R). Then A is called an intuitionistic L-fuzzy ideal (ILFI)
of R if for all x, y ∈ R, the following are satisfied:

(i) µA(x− y) ≥ µA(x) ∧ µA(y);

(ii) µA(xy) ≥ µA(x) ∨ µA(y);

(iii) νA(x− y) ≤ νA(x) ∨ νA(y);

(iv) νA(xy) ≤ νA(x) ∧ νA(y).

Definition 4 ( [7, 12]). Let A ∈ ILFS(M). Then A is called an intuitionistic L-fuzzy module
(ILFM) of M if for all x, y ∈M, r ∈ R, the following are satisfied:

(i) µA(x− y) ≥ µA(x) ∧ µA(y);

(ii) µA(rx) ≥ µA(x);

(iii) µA(θ) = 1;
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(iv) νA(x− y) ≤ νA(x) ∨ νA(y);

(v) νA(rx) ≤ νA(x);

(vi) νA(θ) = 0.

Let IFL(M) denote the set of all intuitionistic L-fuzzyR-modules ofM and ILFI(R) denote
the set of all intuitionistic L-fuzzy ideals of R. We note that when R = M , then A ∈ IFL(M) if
and only if µA(θ) = 1, νA(θ) = 0 and A ∈ ILFI(R).

If L is regular and A,B ∈ IFL(M), then A∗, B∗ are submodules of M . Further we see that
(A+B)∗ = A∗+B∗ and (A∩B)∗ = A∗∩B∗. Also, A∗ = {θ} if and only if A = χ{θ} (see [7]).

3 Intuitionistic L-fuzzy essential submodules

In this section, we extend the concept of an essential submodule of anR-module in the intuitionistic
L-fuzzy setting and prove some results.

Definition 5. Let M be an R-module and A,C ∈ IFL(M) be such that χ{θ} 6= C ⊆ A. Then C
is called an intuitionistic L-fuzzy essential submodule of A if C ∩B 6= χ{θ} ∀B ∈ IFL(M) such
that χ{θ} 6= B ⊆ A. We denote this by C EeA, and we also say that A is an intuitionistic L-fuzzy
essential extension of C.

In particular, when A = χM , then C is called an intuitionistic L-fuzzy essential submodule of
M , written as C Ee χM or C EeM , if C ∩B 6= χ{θ} ∀B 6= χ{θ} ∈ IFL(M).

Proposition 1. LetM be anR-module andA,C ∈ IFL(M) be such that CEeA. Then C∗EeA
∗,

but the converse is true when L is regular.

Proof. Firstly, let A,C ∈ IFL(M) be such that C Ee A. To show that C∗ Ee A
∗.

As C Ee A. Then C ∩D 6= χ{θ}, ∀D ∈ IFL(M), χ{θ} 6= D ⊆ A.
Let {θ} 6= N be a submodule of M . Define D = χN . Clearly, χ{θ} 6= D ∈ IFL(M) and

D ⊆ A and therefore C ∩D 6= χ{θ}. Therefore, there exists θ 6= x ∈ N such that x ∈ (C ∩D)∗

and so (C ∩D)∗ 6= {θ}, i.e., C∗ ∩D∗ 6= {θ}. Hence C∗ Ee A
∗.

Conversely, suppose that L is regular and C∗ Ee A
∗. We want to show that C Ee A. For

this we consider any χ{θ} 6= D ⊆ A, where D ∈ IFL(M). Then D∗ 6= {θ} and D∗ ⊆ A∗.
Therefore, C∗ ∩ D∗ 6= {θ} ⇒ (C ∩ D)∗ 6= {θ}. This means that there exists θ 6= x ∈ M such
that x ∈ (C ∩D)∗. Therefore, C ∩D 6= χ{θ}. Hence C Ee A.

Example 1. Let N be an essential submodule of R-module M . Then the intuitionistic L-fuzzy
submodule A of M defined by

µA(x) =


1, if x = θ

α, if x ∈ N − {θ}
0, if x /∈ N

; νA(x) =


0, if x = θ

β, if x ∈ N − {θ}
1, if x /∈ N

,

where α, β ∈ L \ {0, 1} with α ≤ N(β), is an intuitionistic L-fuzzy essential submodule of M .
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Example 2. Let L = {0, a, b, 1} be a diamond lattice with a ∨ b = 1 and a ∧ b = 0 so that
N(a) = b and N(b) = a. Consider M = {0, 1, 2, . . . , 11} under addition and multiplication
module 12 as Z-module. Consider A,B,C ∈ IFL(M) as follows:

µA(x) =


1, if x = 0

a, if x ∈ {4, 8}
0, if x /∈ {0, 4, 8}

; νA(x) =


0, if x = 0

b, if x ∈ {4, 8}
1, if x /∈ {0, 4, 8}

;

µB(x) =


1, if x = 0

a, if x ∈ {2, 4, 6, 8, 10}
0, if x /∈ {0, 2, 4, 6, 8, 10}

; νB(x) =


0, if x = 0

b, if x ∈ {2, 4, 6, 8, 10}
1, if x /∈ {0, 2, 4, 6, 8, 10}

.

Here A ⊆ B but A is not essential in B. As there is χ{θ} 6= C ∈ IFL(M) such that C ⊆ B and
A ∩ C = χ{θ}, where

µC(x) =


1, if x = 0

a, if x = 6

0, if x /∈ {0, 6}

; νC(x) =


0, if x = 0

b, if x = 6

1, if x /∈ {0, 6}

.

Also, B EeM but A is not essential in M .

Theorem 1. Let L be regular, A,C ∈ IFL(M) be such that χ{θ} 6= C ⊆ A. Then C is an
intuitionistic L-fuzzy essential submodule of A if and only if for each θ 6= x ∈ M , with x ∈ A∗,
there exists r ∈ R such that rx 6= θ and rx ∈ C∗.

Proof. Assume that for each θ 6= x ∈ M with x ∈ A∗ there exists 0 6= r ∈ R such that rx ∈ C∗.
We want to show that C Ee A . Take any B ∈ IFL(M) such that χ{θ} 6= B ⊆ A. We will show
that C ∩B 6= χ{θ}.

Let x ∈ M be such that x 6= θ and x ∈ B∗. As B ⊆ A, therefore B∗ ⊆ A∗ implies
that x ∈ A∗. From the given, there exists r 6= 0 ∈ R such that rx 6= 0 and rx ∈ C∗, where
χ{θ} 6= C ⊆ B. Therefore, µB(rx) ≥ µC(rx) > 0 and νB(rx) ≤ νC(rx) < 1⇒ rx ∈ B∗. Thus,
rx ∈ C∗ ∩B∗ = (C ∩B)∗ and so C ∩B 6= χ{θ}.

Conversely, suppose that C Ee A. Let θ 6= x ∈ M with x ∈ A∗. To show that there
exists r ∈ R such that rx ∈ C∗. Now for every r ∈ R, we have µA(rx) ≥ µA(x) > 0 and
νA(rx) ≤ νA(x) < 1⇒ rx ∈ A∗.

Consider the non-zero submodule N = Rx of M . Define B = A|N , then B ∈ IFL(M) such
that χ{θ} 6= B ⊆ A. As CEeA, therefore C ∩B 6= χ{θ}, so (C ∩B)∗ 6= {θ}, i.e., C∗∩B∗ 6= {θ}
and therefore there exists θ 6= y ∈ M such that y ∈ B∗ and y ∈ C∗. But B∗ = N = Rx. Thus,
there exists 0 6= r ∈ R such that rx = y ∈ C∗. This completes the proof.

Theorem 2. LetA,B,C ∈ IFL(M) be such that C ⊆ B ⊆ A. Then CEeA if and only if CEeB

and B Ee A.
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Proof. Assume that C Ee A. Then C ∩D 6= χ{θ}, ∀D ∈ IFL(M) such that χ{θ} 6= D ⊆ A.
Since B ⊆ A, it follows that C ∩ D 6= χ{θ}, ∀D ∈ IFL(M) such that χ{θ} 6= D ⊆ B.

⇒ C Ee B.
Also since C ∩D 6= χ{θ}, ∀D ∈ IFL(M) such that χ{θ} 6= D ⊆ A and also since C ⊆ B we

get B ∩D 6= χ{θ}, ∀D ∈ IFL(M) such that χ{θ} 6= D ⊆ A. Hence B Ee A.
Conversely, suppose that C Ee B and B Ee A. We want to show that C Ee A.
Since B Ee A we have B ∩ D 6= χ{θ}, ∀D ∈ IFL(M) such that χ{θ} 6= D ⊆ A. Then

B ∩D ∈ IFL(M) satisfies χ{θ} 6= B ∩D ⊆ B and therefore, since C EeB, we get C ∩ (B ∩D)

6= χ{θ}. Since C ⊆ B it follows that C ∩ D 6= χ{θ}, ∀D ∈ IFL(M) such that χ{θ} 6= D ⊆ A.
Therefore C Ee A.

Theorem 3. Let C1, C2, A1, A2 ∈ IFL(M). If C1EeA1 and C2EeA2, then C1 ∩C2EeA1 ∩A2.

Proof. Let D ∈ IFL(M) be such that χ{θ} 6= D ⊆ A1 ∩A2 ⊆ A2. Then since C2 Ee A2 we have
C2 ∩D 6= χ{θ}. Since D ⊆ A1, we get χ{θ} 6= C2 ∩D ⊆ A1. Therefore since C1 Ee A1, we get
C1∩ (C2∩D) 6= χ{θ}. Thus we get (C1∩C2)∩D 6= χ{θ}, ∀D ∈ IFL(M), χ{θ} 6= D ⊆ A1∩A2.
Hence C1 ∩ C2 Ee A1 ∩ A2.

Remark 2. Let C1, C2, A ∈ IFL(M). If C1 Ee A and C2 Ee A, then C1 ∩ C2 Ee A.

Theorem 4. Let L be regular C,A ∈ IFL(M) where C ⊆ A. Let f : N → M be a module
homomorphism such that f(B) ⊆ A where B ∈ IFL(N). If C Ee A then f−1(C)Ee B.

Proof. Given C Ee A. We want to show that f−1(C) Ee B. For this we have to show that
f−1(C)∩D 6= χ{θ}, ∀D ∈ IFL(M), χ{θ} 6= D ⊆ B. That is to show that for givenD ∈ IFL(M),
χ{θ} 6= D ⊆ B, there exists θ 6= x ∈ N such that µf−1(C)∩D(x) 6= 0 and νf−1(C)∩D(x) 6= 1;
i.e., µf−1(C)(x) ∧ µD(x) 6= 0 and νf−1(C)(x) ∨ νD(x) 6= 1, i.e., µC(f(x)) ∧ µD(x) 6= 0 and
νC(f(x)) ∨ νD(x) 6= 1.

Now, we claim that if f(D) = χ{θ}, then D ⊆ f−1(C).
Let for all z ∈ M with f−1(z) 6= ∅, we have µf(D)(z) = µχ{θ}(z) and νf(D)(z) = νχ{θ}(z).

Therefore, we have:

∨{µD(x)|x ∈ N, f(x) = z} =

1, if z = θ

0, if z 6= θ

⇒ ∨{µD(x) | x ∈ N, f(x) = z} = 0 if z 6= θ

⇒ {µD(x) | x ∈ N, f(x) = z} = {0} if z 6= θ

⇒ µD(x) = 0 if f(x) 6= θ. Similarly, we can show that νD(x) = 1 if f(x) 6= θ. Thus we have
µC(f(x)) = µC(θ) = 1 and νC(f(x)) = νC(θ) = 0 if f(x) = θ. Therefore, µD(x) ≤ µC(f(x))

and νD(x) ≥ νC(f(x)) , ∀x ∈ N , i.e., µD(x) ≤ µf−1(C)(x) and νD(x) ≥ νf−1(C)(x), ∀x ∈ N .
Therefore, in this case we have D ⊆ f−1(C) and so we get f−1(C) ∩D = D 6= χ{θ}.

If f(D) 6= χ{θ}, to prove that f−1(C)∩D 6= χ{θ} for D ∈ IFL(M), χ{θ} 6= D ⊆ B, we have
D ⊆ B ⇒ f(D) ⊆ f(B)⇒ f(D) ⊆ A (as f(B) ⊆ A).

Therefore, if f(D) 6= χ{θ}, since C Ee A we get C ∩ f(D) 6= χ{θ}. From this we get that
there exist some x 6= θ ∈M such that µf(D)(x) 6= 0 and νf(D)(x) 6= 1, which further implies that
there exists some y ∈ N such that f(y) = x and µD(y) 6= 0; νD(y) 6= 1.
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Thus for this y we have µC∩f(D)(y) 6= 0 and νC∩f(D)(y) 6= 1, i.e., µC(f(y))∧µf(D)(f(y)) 6= 0

and νC(f(y)) ∨ νf(D)(f(y)) 6= 1. This implies that both µC(f(y)) > 0, νC(f(y)) < 1 and
µf(D)(f(y)) > 0, νf(D)(f(y)) < 1. Since L is regular, we get µf−1(C)(y) > 0, νf−1(C)(y) < 1 and
µD(y) > 0, νD(y) < 1⇒ µf−1(C)(y)∧µD(y) 6= 0 and νf−1(C)(y)∨ νD(y) 6= 1⇒ f−1(C)∩D 6=
χ{θ}. Thus, we get f−1(C)Ee B.

Theorem 5. Let L be a regular and C1, C2, A1, A2 ∈ IFL(M). If Ci Ee Ai, i = 1, 2. If
C1 ∩ C2 = χ{θ}, then A1 ∩ A2 = χ{θ} and C1 ⊕ C2 Ee A1 ⊕ A2.

Proof. Since Ci Ee Ai, i = 1, 2. Then by proposition (3.2) we get C∗i Ee A
∗
i , i = 1, 2. Also

because C1 ∩C2 = χ{θ}, the sum C1 +C2 is the direct sum C1 ⊕C2. Since C1 ∩C2 Ee A1 ∩A2,
it follows that A1∩A2 6= χ{θ} and so the sum A1+A2 is also the direct sum A1⊕A2. Therefore,
since L is regular we have the direct sum of R-modules C∗1 ⊕ C∗2 and A∗1 ⊕ A∗2. Since C∗i Ee A

∗
i ,

i = 1, 2 we get C∗1 ⊕e C∗2 E A∗1 ⊕ A∗2. From this it follows that C1 ⊕ C2 Ee A1 ⊕ A2.

Remark 3. Let L be a regular and C1, C2, A ∈ IFL(M). If CiEeA, i = 1, 2. If C1 ∩C2 = χ{θ},
then C1 ⊕ C2 Ee A.

Proposition 2. Let A,B ∈ IFI(R). Let B be an intuitionistic L-fuzzy prime ideal of R such that
A is not subset of B. Then AEe R.

Proof. Let C ∈ IFI(R) be such that A ∩ C ⊆ B. Since AC ⊆ A ∩ C ⊆ B implies AC ⊆ B.
As B is intuitionistic L-fuzzy prime ideal of R. Therefore either A ⊆ B or C ⊆ B. But given
that A is not a subset of B, so C ⊆ B which implies that AEe R. This completes the proof.

4 Complement of an intuitionistic L-fuzzy module

In this section we extend the concept of a complement of a submodule in the intuitionistic L-fuzzy
setting and prove some results.

Definition 6. Let M be an R-module and A,B,C ∈ IFL(M) be such that B ⊆ A. Then C
is called an intuitionistic L-fuzzy complement of B in A if C ⊆ A and C is maximal with the
property that B ∩ C = χ{θ}. We say that C is complement of B in A.

Theorem 6. Let L be regular and M be an R-module. If C is complement of B in A. Then C∗ is
complement of B∗ in A∗.

Proof. Since C is complement of B in A. Therefore, C is the maximal intuitionistic L-fuzzy
submodule of A with the property that B ∩ C = χ{θ}. Then B∗ ∩ C∗ = {θ}. It remains to show
that C∗ is the maximal one with this property. Let N be a submodule of M such that C∗ ⊆ N and
B∗ ∩N = {θ}. Since µC(x) > 0, νC(x) < 1 for all x ∈ C∗. So let p = inf{µC(x) | x ∈ C∗} and
q = sup{νC(x) | x ∈ C∗}. Then p, q ∈ L\{0, 1} such that p ≤ N(q). Choose α, β ∈ L\{0, 1}
such that 0 < α ≤ p and q ≤ β < 1. Define D ∈ ILFS as follows:

µD(x) =


µC(x), if x ∈ C∗

α, if x ∈ N − C∗

0, if x /∈ N

; νD(x) =


νC(x), if x ∈ C∗

β, if x ∈ N − C∗

1, if x /∈ N

.
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Clearly, D ∈ IFL(M) such that C ⊆ D and soD∗ = N . NowB∗∩N = {θ} ⇒ B∗∩D∗ = {θ}.
This implies (B ∩ D)∗ = {θ} ⇒ B ∩ D = χ{θ}. But C is maximal with this property that
B ∩ C = χ{θ} so C = D and consequently C∗ = D∗ = N . Hence, C∗ is complement of B∗ in
A∗.

Remark 4. The converse of the above theorem is not true. If for any A,B,C ∈ IFL(M). The
submodule C∗ is complement of B∗ in A∗. Then C need not be complement of B in A.

Example 3. Let L = [0, 1] and let the module M = Z6 = {0, 1, 2, 3, 4, 5} be a module over the
ring Z of integers. Define ILFSs A,B,C of M as follows:

µA(x) =


1, if x = 0

0.5, if x = 3

0, if x ∈ {1, 2, 4, 5}

; νA(x) =


0, if x = 0

0.3, if x = 3

1, if x ∈ {1, 2, 4, 5}

;

µB(x) =

1, if x = 0

0, if x 6= 0
; νB(x) =

0, if x = 0

1, if x 6= 0
;

µC(x) =


1, if x = 0

0.6, if x ∈ {2, 4}
0, if x ∈ {1, 3, 5}

; νC(x) =


0, if x = 0

0.3, if x ∈ {2, 4}
1, if x ∈ {1, 3, 5}

.

It is easy to check that A,B,C ∈ IFL(M) such that A∗ = {0, 3}, B∗ = {0} and C∗ =

{0, 2, 4}. Clearly,A∗∩C∗ = {0} = B∗ andC∗ is maximal with this property soC∗ is complement
of B∗ in A∗. But C is not complement of B in A, for if we define the ILFS D on M as follows:

µD(x) =


1, if x = 0

0.7, if x ∈ {2, 4}
0, if x ∈ {1, 3, 5}

; νD(x) =


0, if x = 0

0.1, if x ∈ {2, 4}
1, if x ∈ {1, 3, 5}

.

Then D ∈ IFL(M) with C ⊆ D and D ∩ B = χ{0}. This shows that C is not maximal with the
property that C ∩B = χ{0}.

5 Intuitionistic L-fuzzy closed submodules

In this section we extend the concept of closed submodule in the intuitionistic L-fuzzy setting.

Definition 7. LetM be anR-module andA,B,C ∈ IFL(M). ThenC is said to be an intuitionistic
L-fuzzy closed submodule of A if C ⊆ A and C has no non-constant (proper) intuitionistic
L-fuzzy essential extension in A, i.e., if χ{θ} 6= B ⊂ A such that C Ee B ⇒ B = C. We write
C Ec A when C is an intuitionistic L-fuzzy closed submodule of A.

Remark 5. Note that χ{θ} and A are always intuitionistic L-fuzzy closed submodules of A.
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Theorem 7. Let L be regular and M be an R-module. If A,C ∈ IFL(M) are such that C Ec A,
then C∗ Ec A

∗.

Proof. Firstly, let C Ec A. To show that C∗ Ec A
∗. If possible, let N be a proper submodule of

A∗ such that C∗ Ee N . Then we will show that N = C∗.
Define B ∈ ILFS(M) as

µB(x) =

1, if x ∈ N
0, if x /∈ N

; νB(x) =

0, if x ∈ N
1, if x /∈ N.

.

It is clear thatB ∈ IFL(M) such that B ⊆ A, i.e., B is a proper intuitionistic L-fuzzy submodule
of A. Also, B∗ = N . But C∗ Ee N implies that C∗ Ee B

∗ and therefore C Ee B. Also, C Ec A.
Therefore, we have C = B which implies that C∗ = B∗ = N .

Remark 6. The converse of the above theorem need not be true. See the following example.

Example 4. Consider L,M,A as in Example 3. Here, we notice that B∗ = {0}Ec A
∗, but B is

not intuitionistic L-fuzzy closed in A.

Theorem 8. Let A,B,C,D ∈ IFl(M) such that B ⊆ C ⊆ D ⊆ A and B Ec C and C Ec D,
then B Ec D.

Proof. Since BEcC ⇒ BEeC and if χ{θ} 6= F ⊂ C ∈ IFL(M) such that BEeF , then B = F

(1).
Also, since C Ec D ⇒ C Ee D and if χ{θ} 6= G ⊂ D ∈ IFL(M) such that C Ee G, then

C = G (2).
Now, as B Ee C and C Ee D, then by prop. (3.6), we get B Ee D.

Further, if χ{θ} 6= H ⊂ D ∈ IFL(M) such that B Ee H , then from (1), we get that B = H .
Hence B Ec D.

Proposition 3. Let L be regular and M be an R-module. If A,C ∈ IFL(M), then C is
intuitionistic L-fuzzy closed submodule of A if and only if C is intuitionistic L-fuzzy complement
of some B ∈ IFL(M) such that B ⊆ A.

Proof. Firstly, let C Ec A. Then by Theorem (5.3), we have C∗ Ec A
∗. Hence C∗ is complement

of some submodule N , where N is a proper submodule of A∗. Let B = χN ∈ ILFS(M).
Clearly, B ∈ IFL(M) is such that B ⊆ A and B∗ = N . So C∗ is complement of B∗. Hence,
B∗ ∩ C∗ = {θ} and so B ∩ C = χ{θ}. Next we claim that C is maximal with this property.

Suppose that D ∈ ILFS(M) is such that D ⊆ A and C is intuitionistic L-fuzzy submodule
of D, i.e., C ⊆ D such that B ∩D = χ{θ}. So B∗ ∩D∗ = {θ}. But C∗ is a submodule of D∗ and
C∗ is a complement of B∗. So C∗ = D∗. Thus, C = D and hence C is an intuitionistic L-fuzzy
complement of B.

Conversely, let C be intuitionistic L-fuzzy complement of B in A. We want to show that C
is intuitionistic L-fuzzy closed submodule of A. Suppose that C Ec D, where D ∈ IFL(M) is
such that D ⊆ A. Then C ∩ B Ec D ∩ B (by Corollary (3.8)). Hence χ{θ} Ec D ∩ B and so
D ∩B = χ{θ}. But C is an intuitionistic L-fuzzy submodule of D and C is intuitionistic L-fuzzy
complement of B, hence D = C. Thus C is intuitionistic L-fuzzy closed submodule of A.
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Remark 7. If L is regular and M is an R-module such that C is intuitionistic L-fuzzy closed
submodule of A. Then C being an intuitionistic L-fuzzy complement of some B in A does not
imply that B is intuitionistic L-fuzzy complement of C in A. See the following example.

Example 5. Consider L,M,A as in Example 3. Interchange B and C. We note that C = χ{θ} is
an intuitionistic L-fuzzy closed submodule of A. Also, C is intuitionistic L-fuzzy complement of
B in A. But B is not intuitionistic L-fuzzy complement of C in A.

6 Conclusion

In this paper, we have introduced the notion of essential submodule, closed submodule and
complement of submodule of a module in the intuitionistic L-fuzzy environment to develop the
theory of intuitionistic L-fuzzy modules. It has been shown that the converse of many results
which hold in general complete lattice L hold only in the case when the lattice L is regular. We
have shown that for the existence of complement of an intuitionistic L-fuzzy submodule C, the
lattice L should be regular and that C must be closed.
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