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Abstract: A Generalized Net (GN) model of Intuitionistic Fuzzy Logic (IFL) control and 

parameter adaptation of the Artificial Bee Colony (ABC) algorithm is proposed in the present 

paper. The developed GN-model describes the internal logic of the ABC algorithm with an 

embedded IFL controller to determine the magnitude of perturbation, depending on the current 

iteration of the algorithm. 
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1 Introduction 

In order to increase the performance of an optimization algorithm, especially a metaheuristic 

algorithm, it is necessary to provide adjustments of its parameters depending on the specific 

problem. The algorithm parameters could be a static set or could be varying values during an 

algorithm run. So called parameter control is one of the main challenges of the field of 

optimization computation. 

Finding robust control parameters setting is not a trivial task, since their interaction with the 

algorithm performance is a complex relationship and the optimal ones are problem-dependent 

[16]. An optimal or a near-optimal set of control parameters for one metaheuristic algorithm does 
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not generalize to all cases. This stresses the need of efficient techniques that help finding good 

parameter settings for a given problem, i.e. the need of good parameter tuning methods. 

In the literature, these are studies on new metaheuristic algorithms using fuzzy logic for 

parameter adaptation, e.g. ant colony optimization [2], bee colony optimization [3, 11], 

gravitational search algorithm [31], genetic algorithm [16, 24], bat algorithm [22, 29], etc. A 

survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter 

adaptation is presented in [32]. 

Some works deal with the application of Intuitionistic Fuzzy Logic (IFL) [4, 8, 10] for 

dynamic parameter adaptation of algorithms. In [27], the use of IFL has been investigated to 

control Genetic Algorithm parameters and in [22] – for parameter adaptation of the Bat 

Algorithm. Authors in [27] propose a Generalized Net (GN) model describing the IFL control of 

the crossover and the mutation probability in the genetic algorithm. 

So far, GNs [5–7, 9] have been used as a tool for modelling various metaheuristics: genetic 

algorithms [25, 28, 30], ant colony optimization [12] and the firefly algorithm [26].  

A detailed description of the logic of the basic ABC algorithm within a GN-model is 

presented in [34]. ABC optimization is one of the efficient population-based biological-inspired 

algorithms. There are three continuous optimization algorithms based on intelligent behaviour of 

honeybee swarm [17, 23]. The published results indicate that ABC can efficiently be used for 

many optimization problems [18, 19, 21]. 

The performance of the ABC algorithm is very good for multidimensional basic functions. 

However, it can be improved when dealing with complex optimization problems. A large part of 

the proposed improvements is related to the search equation of the ABC algorithm. Here are some 

of them. 

Gbest-guided ABC algorithm, which incorporates the information of the global best solution 

in the local search, is described in [33]. An improved search equation based on the best solution 

of the previous iteration is introduced in [13]. A version of the algorithm where the onlookers are 

focused directly on the global best solution and update this global best solution one by one is 

presented in [20]. The performance of the basic ABC algorithm is enhanced with Gaussian search 

in the onlookers’ phase, parameter adaptation strategy and fitness-based search for 

neighbourhood mechanism in the employed bees’ phase in [14].  

Two other improvements of the ABC algorithm are discussed in [1]. Two additional control 

parameters are used for improving the convergence rate: a modification rate to control the 

frequency of perturbation and a scaling factor to control the magnitude of perturbation. The 

values of second parameter can be changed during the search based on the ratio of the successful 

mutations. 

A new self-adaptive perturbation for the basic ABC algorithm is proposed in [15]. The values 

of the control parameter ��� are changed according to the current iteration. They are calculated 

in a different way for the employed bees’ phase and for the onlookers’ phase.  

So, the authors are motivated to include in the developed GN-model of ABC algorithm a 

description of an IFL controller for dynamic parameter adaptations of ABC parameter ���. 

The main objective of this research is to propose an IFL controller embedded in the GN-

model for the purpose of calculating the magnitude of perturbation (���) for each iteration of the 

ABC algorithm.  
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2 Background of Artificial Bee Colony algorithm 

Artificial bee colony algorithm is a swarm algorithm introduced by Karaboga [17] that simulates 

the foraging behaviour of the honey bees. ABC is one of the competitive optimization algorithms 

that is highly effective for the purpose of multi-dimensional numerical problems.   

The algorithm can be described roughly as follows. 

The initialization phase of the algorithm is responsible for setting the initial values of the 

algorithm parameters: the population size (NP), the number of the food sources (SN), the number 

of parameters (D, dimension of the search space), the maximum number of trials before 

abandoning a food source (limit) and the maximum number of iterations or cycles (MCN). 

The initial population of food sources is generated during the initialization phase. Equation 

(1) is used for generating each of the food sources: 
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�

 are the lower (Lb) and the upper (Ub) bounds of the 

dimension j, SN is the count of the food sources. The number of trials for each of the generated 

food sources is set to 0. This counter will be incremented each time the food source associated 

with it has not been replaced by a better one. 

Each iteration of the algorithm includes the following three phases: an employed bees’ phase, 

an onlookers’ phase and a scouts’ phase. 

The employed bees search for new food sources around the one stored in their memory, based 

on the equation (2): 

��� = ��� + ���(��� − � �), (2) 

where j is a random integer number in the range �1; ��, k is randomly selected index, 

! ∈ �1; ���, ! ≠ �. ��� ∈ �−1; 1� is a random number.  

During the onlookers’ phase the onlookers choose a food source depending on the probability 

value pi associated with that food source: 

#� =
$%

∑ $'
()
'*+

, (3) 

where fi is the fitness value of the solution i and it is proportional to the nectar amount of the food 

source in position i.  

The scouts’ phase begins after the employed bees and the onlookers finish their search. The 

value of the trials for each food source is compared to the limit, set in the initialization phase. If 

the value of the trials exceeds the limit, the corresponding food source is abandoned. The 

abandoned food source is replaced by a food source generated randomly by equation (1), i.e. a 

food source found by a scout. 

The algorithm stops when the predefined maximum number of iterations (MCN) is reached. 
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3 Intuitionistic fuzzy parameter adaptation  

3.1 Intuitionistic fuzzy sets  

Intuitionistic fuzzy sets (IFSs) have been introduced by Atanassov [4, 8, 10] as an extension and 

generalization of the notion of the Zadeh’s fuzzy sets. IFS is a set whose elements have degrees 

of membership and non-membership.   

Let E is a fixed universe, E ≠ ∅. Let A be a subset of E. The IFS -∗ is defined as follows: 

-∗ = /〈�, 12(�), �2(�)〉|� ∈ 56, where 

12, �2: 5 → �0; 1�, 0 ≤  12(�) + �2(�) ≤ 1. 

where 12(�) is the degree of membership, �2(�) is the degree of non-membership of an element 

x to the set A. Let :2(�) = 1 −  12(�) − �2(�). The function :2(�) determines the degree of 

uncertainty. 

3.2 Intuitionistic fuzzy logic system 

The basic structure of an intuitionistic fuzzy logic system (IFLS) defined in terms of IFS is 

presented in Error! Reference source not found.1. 

 

Figure 1. Basic structure of intuitionistic fuzzy logic system 

The first step of the IFLS is to fuzzify the crisp value of the input parameter using its 

membership and non-membership functions. The intuitionistic fuzzy inference is based on IF-

THEN rules. The actual task here is to compute the IF output sets derived by the IF input sets. 

The final step is to convert the IFS output of the rules into a crisp value. 

The IFLS proposed in the present research uses Mamdani type inference method for the 

membership and non-membership functions.  

The intuitionistic fuzzy logic controller (IFLC) takes a single input, the variable I (Iteration), 

defined by the equation (4) in the range [0; 1]: 
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The membership and the non-membership functions of the input variable I are presented in 

Figure 2. They are described by three IFS: Low, Middle and High. 
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Figure 2. Membership and mon-membership functions for iteration 

The output of the IFLC is the value of the magnitude of perturbation ��� used during the 

search of the employed bees and the onlookers, equation (2), where ��� ∈ �−1; 1�. 

The membership and the non-membership functions of the output parameter ��� are presented 

in Figure 3. They are also described by three IFS: Low, Middle and High. 

 

 

Figure 3. Membership and non-membership functions for ��� 

The rules of the system are three of Mamdani type, described as follows: 

1) IF I (Iteration)  is Low       THEN  ��� is High. 

2) IF I (Iteration)  is Middle   THEN  ��� is Middle. 

3) IF I (Iteration)  is High      THEN  ��� is Low. 
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When the iterations are Low, the value of the magnitude of perturbation is High. The 

perturbation from the original food source at this point is bigger. The aim is to explore larger 

areas around the current food source. 

When the iterations are Middle, the value of the magnitude of perturbation is Middle.  

When the iterations are High, the value of the magnitude of perturbation is Low. In this stage, 

at best the solutions have to converge to an optimal one. The perturbation should be kept smaller. 

That way, a good balance between the exploration and the exploitation of the search could be 

found. 

4 Generalized net model of ABC optimization  

with IFL parameter adaptation 

Based on the GN-model of the ABC algorithm proposed in [34], the GN-model with IFL 

parameter adaptation is presented in Figure 4. Each of the main steps of the algorithm is 

associated with a transition of the developed GN-model. 

 

Figure 4. Generalized net model of ABC with IFL controller 

The first transition Z1 is responsible for the initialization step of the algorithm. The token χ 

enters the GN through the input place l1 with initial characteristics “ABC input parameters: SN, 

D, limit, MCN”. The token δ enters the GN through the input place l2 with initial characteristics 

“Problem parameters: objective function f(x), Lb and Ub”. 

The form of the first transition Z1 of the GN-model is the following: 
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Z1 = 〈{l1, l2}, {l3, l4, l5}, r1, ∧(l1, l2)〉,  

r1 = 
 l3 l4 l5 

l1 true true false 

 l2 true false true 

 

The first transition can be activated only when both of the tokens χ and δ are present in their 

initial places. Each of the tokens χ and δ is split into two identical tokens upon activation. One 

copy of χ and one copy of δ merge into a new token α in the output place l3. In place l3, based on 

equation (1), the token α receives new characteristics “initial population xi, f(xi) and trialsi = 0”. 

At the same time, the other copies of the tokens χ and δ are transferred to output places l4 and l5, 

respectively.  

The second transition Z2 is related to the work of the embedded IFL controller that is 

responsible for the adaptation of the magnitude of perturbation ���. The token ρ enters the GN 

through the input place l6 with initial characteristic “current iteration = 0, MCN”. 

The form of the second transition Z2 is the following: 

 

Z2 = 〈{l6, l7, l41}, {l7, l8, l9, l10}, r2, ∨(l6, l7, l41)〉, 

r2 = 
 l7 l8 l9 l10 

l6 true false false false 

 l7 false W7,8 W7,9 W7,10 

 l41 true false false false 

where  

• W7,8 = “max(μLowIter(I), μMidIter(I), μHighIter(I)) = μLowIter(I)”, 

• W7,9 = “max(μLowIter(I), μMidIter(I), μHighIter(I)) = μMidIter(I)”, 

• W7,10 = “max(μLowIter(I), μMidIter(I), μHighIter(I)) = μHighIter(I)”. 

The second transition Z2 can be activated when there is a token in one of the places l6, l7 or l41. 

Each time the token ρ is moved from an input place to place l7 an additional 1 is added to the 

value of the initial characteristic “current iteration”. When the token ρ is moved from place l7 to 

one of the output places l8, l9 or l10 during the first iteration, it receives an additional characteristic 

“���”. After that first iteration, each time the token ρ is transferred from place l7 to one of the 

output places, the value of the characteristic “���” is changed. The new value of the magnitude 

of perturbation “���” is actually the value calculated by the IFL controller for this particular 

iteration of the algorithm. 

The next two transitions are related to the phase of the employed bees. 

The transition Z3 is responsible for generating the new food sources neighbouring the ones, 

currently exploited by the employed bees. The form of the third transition is: 

 

Z3 = 〈{l3, l4, l5, l8, l9, l10, l11, l37, l39, l40}, {l11, l12, l13, l14, l15}, r3,  

∨(∧(l3, l4, l5, ∨(l8, l9, l10)), l11, ∧(l37, l39, l40, ∨(l8, l9, l10)))〉, 
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r3 = 
 l11 l12 l13 l14 l15 

. 
l3 true false false false false 

 l4 true false true false false  

 l5 true false false true false  

 l8 true false false false true  

 l9 true false false false true  

 l10 true false false false true  

 l11 false true false false false  

 l37 true false false false false  

 l39 true false true false false  

 l40 true false false true false  

 

In order for the third transition to be activated for the first time, there should be tokens in l3, 

l4, l5 and in one of the places l8, l9 or l10, simultaneously. Later for the activation of the third 

transition, there should be a token in place l11 or at the end of the current iteration, the tokens 

should be placed in l37, l39, l40 and again in one of the places l8, l9 or l10, simultaneously. 

During the first iteration χ is stored in l4, δ is stored in l5 and ρ is in one of the places l8, l9 

or l10. They split into two identical tokens each time they have to be transferred. Their copies (χ, δ 

and ρ) are moved into places l13, l14 and l15 respectively without receiving any additional 

characteristics.  

The other copies of χ, δ and ρ along with the token α from place l3 are merged into a new 

token β in place l11 during the first iteration. After the first iteration the copies of χ and δ are stored 

in places l39 and l40. They merge with the token from place l37 and the token ρ from one of 

the places l8, l9 or l10 into a new token β in place l11. When this new token β is moved to l12, based 

on equation (2), it gains new characteristics “new solutions νij and their corresponding 

evaluations fi”. 

The fourth transition Z4 is where the final part of the employed bees’ phase takes place. This 

is where the greedy selection between the new generated food sources and the ones in the 

memories of the employed bees is applied. The form of transition Z4 of the GN-model is the 

following: 

 

Z4 = 〈{l12, l13, l14, l15, l16}, {l16, l17, l18, l19, l20}, r4, ∨(∧(l12, l13, l14, l15), l16)〉, 

r4 = 
 l16 l17 l18 l19 l20 

l12 true false false false false 

 l13 true false true false false 

 l14 true false false true false 

 l15 true false false false true 

 l16 false true false false false 

 

The fourth transition Z4 can be activated when there are tokens in the input places l12, l13, l14 

and l15 simultaneously or there is a token in place l16.  

Copies of the tokens χ, δ and ρ are moved to l18, l19 and l20, respectively. The token β is merged 

with the other copies of the tokens χ, δ and ρ into a new token γ in place l16. The greedy selection 

is applied here between the new generated solutions and the corresponding old ones. When the 
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token γ is moved from place l16 to place l17, it receives additional characteristics “results of the 

greedy selection process, corresponding fi, changed trialsi and calculated probabilities pij”. The 

probability values will be used to select food sources during the onlookers’ phase later. 

The transitions Z5 and Z6 are related to the onlookers’ phase. The fifth transition is responsible 

for generating and evaluating new food sources based on the roulette wheel selection. The form 

of the transition Z5 of the GN-model is: 

 

Z5 = 〈{l17, l18, l19, l20, l21}, {l21, l22, l23, l24, l25}, r5, ∨(∧(l17, l18, l19, l20), l21)〉, 

r5 = 
 l21 l22 l23 l24 l25 

l17 true false false false false 

 l18 true false true false false 

 l19 true false false true false 

 l20 true false false false true 

 l21 false true false false false 

 

The fifth transition Z5 can be activated when there are tokens in the input places l17, l18, l19 

and l20 simultaneously or there is a token in place l21.  

Copies of the tokens χ, δ and ρ are moved to l23, l24 and l25, respectively. The token γ is merged 

with the other copies of the tokens χ, δ and ρ into a new token ε in place l21. In place l21 the token 

ε receives a new characteristic “evaluated new solutions for the onlookers from the solutions xij 

selected depending on pij”, based on equation (2). When the token ε is transferred from place l21 

to place l22, the additional characteristics “new solutions for the onlookers and their 

corresponding fi” are given to the token. 

The transition Z6 is related to the greedy selection process of the onlookers’ phase. It has the 

following form: 

 

Z6 = 〈{l22, l23, l24, l25, l26}, {l26, l27, l28, l29, l30}, r6, ∨(∧(l22, l23, l24, l25), l26)〉, 

r6 = 
 l26 l27 l28 l29 l30 

l22 true false false false false 

 l23 true false true false false 

 l24 true false false true false 

 l25 true false false false true 

 l26 false true false false false 

 

The sixth transition Z6 can be activated when there are tokens in the input places l22, l23, l24 

and l25 simultaneously or there is a token in place l26.  

Copies of the tokens χ, δ and ρ are moved to l28, l29 and l30, respectively. The token ε is merged 

with the other copies of the tokens χ, δ and ρ into a new token ζ in place l26. The greedy selection 

during the onlookers’ phase is applied between the new generated solutions and the 

corresponding old ones upon entering place l26. When the token ζ is transferred from place l26 to 

place l27, the “results of the greedy selection process for the onlookers, corresponding fi, changed 

trialsi” are added to the list of characteristics of the token ζ. 
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The transition Z7 describes the scout bee phase, where the food sources that would be 

abandoned will be identified. It has the following form: 

 

Z7 = 〈{l27, l28, l29, l30, l31}, {l31, l32, l33, l34, l35, l36}, r7, ∨(∧(l27, l28, l29, l30), l31)〉, 

r7 = 
 l31 l32 l33 l34 l35 l36 

l27 true false false false false false 

 l28 true false false true false false 

 l29 true false false false true false 

 l30 true false false false false true 

 l31 false true true false false false 

 

The seventh transition Z7 can be activated when there are tokens in the input places l27, l28, l29 

and l30 simultaneously or there is a token in place l31.  

Copies of the tokens χ, δ and ρ are moved to l34, l35 and l36, respectively. The token ζ is merged 

with the other copies of the tokens χ, δ and ρ into a new token η in place l31. Here upon entering 

place l31, the solutions that have not been improved after a certain number of attempts and thus 

have to be abandoned are determined.  

The token η is split into two tokens: one with the abandoned solutions and the second with 

the rest of the solutions that are to be explored further. When the token η enters place l32, the list 

of solutions is extended with random solutions, generated based on equation (1). These random 

solutions are to replace the abandoned ones. The additional characteristics “new solutions, 

corresponding fi and trialsi = 0” is added to the characteristics of the token η. 

When the token η is transferred from place l31 to place l33, the “abandoned solutions” are 

stored as a characteristic of the token. 

The last transition Z8 of the GN-model is responsible for selecting the best solution during the 

current iteration. All the remain solutions are evaluated. The transition Z8 has the following form:  

 

Z8 = 〈{l32, l34, l35, l36, l42}, {l37, l38, l39, l40, l41, l42}, r8, ∨(∧(l32, l34, l35, l36), l42)〉, 

r8 = 
 l37 l38 l39 l40 l41 l42 

l32 false false false false false false 

 l34 true false true false false false 

 l35 true false false true false false 

 l36 true false false false true false 

 l42 W42,37 W42,38 false false false true 

where  

• W42,37 = “current iteration < MCN”, 

• W42,38 =  W42,37. 

The last transition Z8 can be activated when there are tokens in the input places l32, l34, l35 and 

l36 simultaneously or there is a token in place l42.  

Copies of the tokens χ, δ and ρ are moved to l39, l40 and l41, respectively. The token η is merged 

with the other copies of the tokens χ, δ and ρ into a new token θ in place l42. In place l42 the token 

θ receives new characteristics “ranked solutions, calculated corresponding fi, the best solution of 

the current iteration and its corresponding fbest”.  

¬
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The token θ is transferred to place l37 if the end of the ABC algorithm is not reached, i.e. the 

predicate W42,37 is evaluated as true. If the end of the algorithm is reached, i.e. the predicate W42,38 

is evaluated as true, the token θ is transferred to place l38 where “the best solution and its 

corresponding evaluation” are added as a final characteristic of the token. 

5 Conclusion  

In this paper the apparatus of generalized nets is used to describe the parameter adaptation of 

artificial bee colony optimization algorithm. The GN-model of ABC algorithm consists of 8 

transitions and 42 places and performs the algorithm’s basic procedures. An IFL controller is 

embedded in the GN-model for the purpose of calculating the magnitude of perturbation (���) for 

each iteration of the ABC algorithm. The application of the IFL controller can be extended to any 

other algorithm parameter or parameters as long as the predicates of the corresponding transition 

and the characteristic functions of the output places are changed. 
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