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1 Introduction

The concept of fuzzy sets was introduced initially by Zadeh [31] in 1965. George and Veera-
mani [ 10] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [13].
In 1986 Atanassov [6] introduced and studied the concept of intuitionistic fuzzy sets as a gener-
alization of fuzzy sets [1]. Recently, many authors have proved fixed point theorems involving
intuitionistic fuzzy sets (see [7, 11, 14,17-19,28,30] and references therein). Motivated by some
work of V. Popa et al. via implicit relation, we have observed that proving fixed point theorems
using an implicit relation is a good idea since it covers several contractive conditions rather than
one contractive condition. In this paper, we prove a related fixed point theorem for four mappings
using an implicit relation. Our theorem generalizes the theorem of Popa [23] and other theorems
in literature.
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2 Preliminaries

For the terminologies and basic properties of intuitionistic fuzzy metric, we begin with some
definitions, as follows.

Definition 1 ( [26]). A binary operation * : [0, 1] x [0, 1] — [0, 1] is called a continuous t-norm
if it satisfies the following conditions:

1) x is associative and commutative,

2) * is continuous,

3)ax1=aforallac€|0,1]

4)axb < cxdwhenever a < candb < d; for each a,b,c,d € [0, 1].

Two typical examples of a continuous t-norm are a x b = ab and a x b = min {a, b}.

Definition 2 ([26]). A binary operation ) : [0,1] x [0, 1] — [0, 1] is called a continuous t-conorm
if it satisfies the following conditions:

1) § is associative and commutative,

2) { is continuous,

3) aQ0 = aforall a € [0,1],

4) aQb < cOd whenever a < cand b < d; for each a,b, c,d € [0, 1].

Definition 3 ( [10]). A 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary (non-
empty) set, * is a continuous t-norm and M is a fuzzy metric on X? x (0,00) satisfying the
following conditions for each x,y,z € X andt,s > 0,

1) M(x,y,t) >0,
2) M(x,y,t) = 1ifand only if x =y,
3) M(z,y,t) = M(y,z,1),
4) M(x,y,t)« M(y,z,s) < M(x,z,t+s),
5) M(z,y,.): (0,00) — [0, 1] is continuous.

Definition 4 ( [1]). A 5-tuple (X, M, N, *, Q) is called an intuitionistic fuzzy metric space if X
is an arbitrary (non-empty) set, * is a continuous t-norm,§ is a continuous t-conorm and M, N
are a fuzzy metric on X? x (0, 00) satisfying the following conditions for each x,y,z € X and
t,s >0,

1) M(z,y,t) + N(z,y,t) < 1.

2) M(x,y,t) >0,

3) M(z,y,t) =1ifand only if xt =y,

4) M(z,y,t) = M(y,z,1),

5) M(x,y,t)« M(y,z,s) < M(x,z,t+ s),

6) M(x,y,.): (0,00) — [0,1] is continuous

7) M(z,y,t) >0,

8)N(:v y,t) = 0ifand only if x = v,
N(z,y,t) = N(y,z, 1),

N G ON e n o) 2 N2t 4 5
11) N(z,y,.) : (0,00) — [0, 1] is continuous.
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Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M (z,y,t) and
N(z,y,t) respectively denote the degree of nearness and degree of nonnearness between x and y
with respect to t.

Remark 1. In intuitionistic fuzzy metric space, M (x,y,t) is non-decreasing and N (x,y,t) is
non-increasing for all v,y € X.

Example 1 ( [27]). Let (X, d) be a metric space. Define t-norm a x b = min{a, b} and t-conorm
a®b = max{a, b} and forall z,y € X andt > 0,

t N d(z,y)
<x7 y7 ) t + d(x’ y)7 (:C? y? ) t _I_ d(l'7 y)

Then (X, M, N,x,Q) is an intuitionistic fuzzy metric space induced by the metric d. It is
obvious that N (x,y,t) =1 — M(z,y,t).

Definition 5 ([1]). Let (X, M, N, x, () be an intuitionistic fuzzy metric space(IFM space), then

1) A sequence {x,} in X is said to be convergent to a point x € X if lim M(x,,z,t) = 1,
n—oo
lim N(z,,z,t) =0;Vt>0.

n—oo

2) A sequence {x,} in X is said to be a Cauchy sequence if lim M (z,p, Tp,t) = 1,
n—oo
im N(Zptp, Tp,t) =0;YVt > 0andp > 0.

n—o0

Definition 6 ( [2]). Let (X, M, N,x,{) be an intuitionistic fuzzy metric space in which every
Cauchy sequence is convergent, then (X, M, N, x, () is said to be a complete fuzzy metric space.

Lemma 1 ( [2]). Let {u,} be a sequence in an intuitionistic fuzzy metric space (X, M, N, *, Q).
If there exists a constant k € (0,1) such that M (up, upi1,kt) > M (up_1,u,,t) and
N (Up, ups1, kt) < N (Up_1,up, t) forall t > 0, then {u,} is a Cauchy sequence in X.

Lemma 2 ( [2]). Let (X, M,N,*,Q) be an intuitionistic fuzzy metric space and for all
r,y € X,t > 0 and if for a number k € (0,1), M(z,y,kt) > M(x,y,t) and
N(z,y,kt) < N(z,y,t) then x = y.

The following theorem is proved by V. Popa [23].

Theorem 1. Let (X, d) and (Y, p) be complete metric spaces. Let A, B be mappings of X into'Y
and let S,T be mappings of Y into X satisfying the inequalities:

F(d(SAz, TBx'),d(z,2"),d(z, SAz),d(x', TBx"), p(Az, Bx')) <0,

G(p(BSy, ATY), p(y,y), ply, BSy), p(y', ATY'), d(Sy, Ty')) < 0,
forall x,x" in X and y,y' in Y, where F,G € F5. If one of the mappings A, B,T and S is

continuous, then S A and T'B have a common fixed point z in X and BS and AT have a common
fixed point w in'Y. Further, Az = Bz = w and Sw = Tw = 2.
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3 Implicit relation

Implicit relations play an important role in establishing of the fixed point theorems (see [3-5,
15,20,22]). Our implicit relation can be described as follows: Let ® be the set of the functions
01,2, 01,65 : [0, 1]5 — R such that, for every u, v, w € (0,1)

(H1) 1, @9, 01, 05 are continuous in each coordinate variable,

(H>) 1, 61 are nonincreasing in second and 3rd variables,

(Hs) 2, 65 1s nonincreasing in second and 4th variables,

(Hy) @1 (u,v,u,v,w) > 0= u > min{v,w}.

(Hs) 01 (u,v,u,v,w) <0=u < max{v,w}.

(Hg) @2 (u,v,v,u,w) > 0= u > min{v,w} .

(H7) 03 (u,v,v,u,w) < 0= u < max{v,w}.

(Hg) ¢1 (u,1,v,1,1) > 0or ¢y (u,u,1,1,v) > 0= u > .

(Hyg) 01 (u,0,v,0,0) < 0orb (u,u,0,0,v) <0=u<w.

(Hyo) p2 (u,1,v,1,1) > 0or g (u,v,v,v,1) > 0= u > v.

(Hi1) 02 (u,0,v,0,0) < 0or by (u,v,v,v,0) <0=u<w.

The above definitions, results and implicit relation motivated us to prove new related fixed
point theorems for four mappings on intuitionistic fuzzy metric spaces by using implicit relation.

4 Main result

The main result of this paper is the following theorem.

Theorem 2. Let (X, My, Ny, x,) and (Y, My, No, *, Q) be a complete intuitionistic fuzzy metric
spaces with M (z,x',t) — last — oo forall x,z' € X and My(y,y',t) — 1 ast — oo for all
y,y €Y. Let A, B be mappings of X into Y and let S,T be mappings of Y into X satisfying:

o1 (M1 (SAx, TBa' kt), My(x, 2’ t), My(x, SAx,t), M1 («', TBa' t), Ms(Ax, Bx' 1)) > 0 4.1

01(N1(SAz, TBx', kt), Ni(x,2',t), Ny (x, SAz,t), Ny (2', TBx',t), No(Az, Ba',t)) < 0 4.2)
%02(M2(BS?J,AT2/, kt)7M2(yay/at)vMQ(yaBSyvt)7M2(y/7ATy/at)aMl(SyaTy/at)) >0 (43)
GZ(NZ(BSyvATy/7kt)aNQ(yvylvt)aN2(y7BSyat)7NQ(ylvATy/vt)le(Sy7Tyl7t)) S 0 (44)

for all x,z'in X and y,y' inY and for all t > 0, where o1, ps,01,00 € ®and 0 < k < 1.
Then, if one of the mappings A, B, T and S is continuous then SA and T'B have a unique fixed
point z in X and BS and AT have a unique fixed point w in Y. Further, Az = Bz = w and
Sw=Tw =z

Proof. Let x be an arbitrary point in X. We define the sequences {z,} and {y,} in X and Y
respectively by:

SYan—-1 = Ton—1, BTon_1 = Yon, TY2n = Ton, ATon = Yont1.
Using the inequality (4.1) and (4.2), we have successively
©1(M(SAxon, TBagy_1, kt), Mi(22n, Ton—1,1), M1(@on, SAxon, ), Mi(2on—1, T Bxon_1,t), Ma( Ay, Broy_1,t)) >0,
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01 (N1 (SAzon, TBon—1, kt), Ni(Zan, Tan—1,1), N1 (Ton, SATo, 1), N1(22n—1, T BTon—1,t), No(Axon, Bron_1,t)) <0,

that is,
01 (M (Tont1, Tan, kt), My (Ton, Ton—1,1), Mi(T2n, Tant1,t), Mi(Tan—1, Tan, t), Ma(Yon, Yont1,t)) > 0.

91(N1 (I2n+17 TLon, kt)a N1($2n7 Ton—1, t)? Nl (annv Ton+1, t)? Nl (xanlv Ton, t)a NQ(ana Yon+1, t)) S 0.

As 7 and 6 are nonincreasing in the third variable, we get
01 (M1 (241, Tan, kt), My (Ton, Ton—1,1), M1(Zon, Tani1, kt), Mi(Ton—1, Tan, t), Ma(Yon, Yon+1,t)) > 0.

01 (N1 (@ant1, Ton, kt), N1(zon, Ton—1,1), N1(Zan, Ton1, kt), N1(Ton—1, Zan, t), No(Y2n, Yont1, 1)) < 0.

which implies by (H,) and (H5) respectively

M (xopyi1, Ton, kt) > min {M;(z2,, Ton—1,t), Ma(Yon, Yont1,t)} - 4.5)
Ni(Tont1, Ton, kt) < max {Ni(xon, Tan—1,t), No(Yon, Yont1,t)} - (4.6)

Using inequality (4.1) and (4.2) again, it follows that

Ml ('TQTL; Ton—1, t) Z min {Ml (.’172”71, Ton—2, t)7 M2 (Z/2n7 Yon—1, t)} ) (47)
Ni(zan, Ton—1,t) < max{Ni(xan_1,Ton—2,1), N2(Yon, Yon—1,1)} (4.8)

Similarly, using inequality (4.3) and (4.4), we get
02 (Mo (Yont1, Yons kt), Ma(Yon, Yon—1,1), Mo (Yon, Y2n—1,1), Mo (Yon+1, Yon, t), M1(T2n, Tan—1,t)) > 0.

0 (Na(Y2n+1: Yons kt), No(Yons Yon—1, 1), No(Yon, Yon—1, 1), No(Y2n+1, Yon, t), N1(Ton, Ton—1,t)) < 0.

Since (, and 5 are nonincreasing in the fourth variable, we obtain
©2 (M2 (y2n+17 Yon,s kt)? M2 (y2n7 Yon—1, t)? MZ (y2n7 Yon—1, t)? M2 (y2n+17 Yon, kt)7 Ml (xQny Ton—1, t)) Z 0.

0> (Ms(Yon+1, Yon, kt), Ma(Yan, Yon—1,1t), Ma(Yon, Yon—1,1), Ma(Yon+1, Yon, kt), M1 (22, Ton—1,t)) < 0.

From (Hg) and ( H;) respectevely, we have

Ms(Yon, Yoni1, kt) > min{Mi(zan, Ton—1,1), Ma(Yan—1, Yon, 1)}, 4.9)
No(Yan, Yont1, kt) < max {Ny(z2n, Ton-1,t), No(Yon—1, Y2n, 1)} (4.10)

and
Ms(yan—1,Yon, kt) > min{M;(za,—2, Ton—1,1), Ma(Y2n—2, Y2n—1,1)} . 4.11)
No(Yan—1, Yon, kt) < max {Ni(za,—2, Ton—1,1), N2 (Yon—2, Yon—1,1)} (4.12)

Using inequalities (4.5), (4.9), and (4.6), (4.10) we have

M (xon41, Tan, kt) > min {M;(22,, Ton—1,1t), Ma(y2n—1, Y2n. )}, (4.13)
Ni(Tont1, Ton, kt) < max {Ni(xon, Tan—1,t), Na(Y2n—1,Yon, t)} . (4.14)
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Similarly, from inequalities (4.7), (4.11) and (4.8), (4.12), we have

M (xon, Top—1,t) > min{Mi(ron—2, Tan—1,t), M2(Yon—2,Yan—1,t)} (4.15)
Ni(on, Tap—1,t) < max {Ni(z2,—2,Ton-1,1), No(Yon—2, Y2n—1,1)} (4.16)

It now follows from inequalities (4.13), (4.14) and (4.15), (4.16) that

Ml(xn—‘rhxn’kt) Z min {Ml(xn7xn—17t)7M2<yn7yn—lat)} (417)

Nl(xn+17$n7kt) S max {Nl(xnaxnflat%NQ(ynaynfbt)} (418)
and

M2(yn+layn7kt) Z min {Ml(xnaxn—lat)aMZ(ynayn—lat)} (419)

No(Ynst1, Yn, kt) < max{Ny(xn, xn_1,t), No(Yn, Yn_1,1)} (4.20)

It now follows inequalities (4.17), (4.18) and (4.19), (4.20)

Ml (anrlJ T, kt) Z M2 (yn7 Yn—1, t) (421)

M2<yn+1, Yn, k’t) 2 M1 (.flfn, Tp—1, t) (422)
and

N1($n+1,$n, kt) S NQ(yn;yn—la t) (423)

N2 (yn+17 Yn,s ]{Zt) S N1 (LUTH Tn-1, t) (424)

Using (4.21), (4.22) and (4.23), (4.24) we have forn = 1,2, ...

t
Ml(anrlaxmt) 2 M2 (ynaynbﬁ)

t
MZ(ynJrlaxn;t) Z Ml (xn7xn17ﬁ>

and

t
Nl(xn—&-l?mn;t) S N2 (ynayn—laﬁ>

t
NQ(yn+17yn:t) S Nl (wmxnla ﬁ) .

Forn = 1,2...,since 0 < k < 1, from Lemma 2 it follows that {x,} and {y,} are Cauchy
sequences in X and Y, respectively. Hence, {x,} converges to z in X and {y,} converges to w
Y.

Now suppose that A is continuous. Then

lim Axy, = Az = limys, 1 = w
and so Az = w. Using inequality (4.1) and (4.2) we get
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1 (M1(SAz, TBxo, 1, kt), M1(z, x9,-1,t), M1(2z, SAz, t), M1 (29,1, TBxon_1,t), Mo(Az, Bxg, 1,t)) > 0,
01 (N, (SAz, TBxoy_1,kt), Ny (2, w9n_1,t), Ni(2,SAz,t), Ny (22n_1, TBxoy_1,t), No(Az, Bxo,_1,t)) <0,
that is,
o1 (M (Sw, xay, kt), My (2, xon—1,t), M1(z, Sw,t), M1 (291, Ton, t), Ma(w, yon, t)) > 0.
01 (N1 (Sw, xon, kt), N1(2, xan—1,t), N1(z, Sw,t), N1 (Ton—1, Tan, t), Na(w, yan, t)) < 0.
Letting n tend to infinity, we have

o1(M(Sw, z, kt), 1, My(z, Sw,t),1,1)
el(Nl(Swa Zs kt>707Nl(Za Swvt)7070) < 0

v
o

from (Hg) and (Hy), we get

M, (Sw, z,kt) > M(z, Sw,t),
Ni(Sw, z,kt) < Ni(z,Sw,t),

and so Sw = z = S Az. On the other hand, using inequality (4.3) and (4.4) we have successively
P2 (MQ(BSU), ATy2n7 kt)) MQ(wa Yon, t)a MQ(wa BSU), t)v M?(y2n> ATana t>7 Ml(Swv Ty2n7 t)) > 07

92 (NQ(BSU))ATZ/QTH kt)> N2<w7 y2n)t)a NQ(wa Bsw>t)7 NQ(y2n7 ATy2n7t)a Nl(SUJ,Tyzm t)) > Oa

then

Vv
o

P2 (MQ(BZ> Yon+1, kt), MZ(wa Yon, t)a M2(wv BZ, t)a MQ(?-/?m Yon+1, t)> Ml(za Lon, t))
02 (NQ(BZ, Yon+1, k’t), NQ(U}, Yon s t), NQ(U}, BZ7 t), Ng(ygn, Yon+1, t), Nl(Z, Lon, t))

IA
o

Letting n tend to infinity, we have

wo(My(Bz,w, kt), 1, My(w, Bz,t),1,1)
92<N2(BZ7 w, kt)a 07 NQ(w7 BZ,t), Oa 0) < 0

Y
o

Thus, from (Hyo) and (Hy;), we get

M2(Bz7kat) > MQ(UJ,BZ,t)
Ny(Bz,w,kt) < Ny(w,Bz,t),

and so w = Bz = BSw. Using inequalities (4.1), (4.2) and (4.3), (4.4) we have respectively:

z = Twandz =Tw =TBz
w = ATw.
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The same result holds also if one of the mappings B, S, 71" is continuous . To prove the uniqueness,
suppose that 7'B and S A have a second distinct common fixed point z’. Then, using inequalities
(4.1) and (4.2), we get

o1 (My(SAz, TBZ'  kt), My(z,2',t), Mi(z,SAz,t), My (2", TBZ',t), My(Az, B2’ t))) > 0
0y (N1 (SAz, TBZ' kt), Ni(z,2,t), Ni(z,SAz,t), N\ (2, TB2',t), Ny(Az, BZ';t)) < 0
that is
o1 (M (2,2 kt), My(z,2',t), My(z, z,t), My(2', 2/, 1), My(Az, B2’ t))) > 0
01 (N1(z, 2", kt), N1(z,2',t), N1(z, 2,t), N1 (2, 2/, 1), No(Az, B2/, t)) < 0.
Therefore,
o1 (My(z,2' kt), My(z,2',t),1,1, My(Az, B2, t))) > 0
01 (N1(z, 2", kt), N1(z,2',1),0,0, Ny(Az, BZ',t)) < 0
As 1 and 6 are nonincreasing in second variable, we get
®1 (Ml(Z, Z/, kt), Ml(Z, Z/, k/’t), 1, 1, MQ(AZ, BZ/, t))) >
0y (N1(z, 2, kt), N1(z, 2, kt),0,0, No(Az, B2’ 1)) < 0,
which implies by (Hg) and (Hy)
M (z,7' kt) > My(Az, B2 t) (4.25)
Ni(z,2' kt) < No(Az, B t). (4.26)
Further, applying inequalities (4.3) and (4.4), we obtain
02 (My(BZ', Az, kt), My(Az, B2’ t), My(Az, B2 t), Mo(B2', Az, t), My (2, z,t)) > 0
Oy (No(B2', Az, kt), No(Az, v t), No(Az, B2 t), No(BZ', Az, t), N1(2', 2,1)) < 0
Using (Hyo) and (H;1), we get
My(B2', Az, kt) > My(Z,2,t) (4.27)
No(BZ', Az, kt) < Ny(2,2,1). (4.28)
By (4.25), (4.26) and (4.27), (4.28)
M(z, 2 kt) > M(Z,2,t)
Ni(z, 2 kt) < Ny(2,2,1)

Therefore, contradiction with Lemma 2, then, the pair 7'B and S A have a unique common fixed
point. The uniqueness of w follows in a similar manner. The proof is complete. [
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