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1 Introduction 

Stochastic gradient descent is a very popular and common algorithm used in various machine 

learning algorithms, the most important being the basis of Neural Networks (NN). Gradient 

descent is a method of finding a local extremum (minimum or maximum) of a function by moving 

along the gradient. Dropout [25] works by switching off neurons in a network during training to 

force the remaining neurons to take on the load of the missing neurons. This is typically done 
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randomly with a certain percentage of neurons per layer being switched off. To find the average 

weight of each neuron, we use avgk and avgk is the average weight input of a neuron on the k-th 

layer and Wjk
(i) is the matrix of the weight for the current iteration i before beginning the training 

and n is the number of neurons in the k-th layer. 
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In the present work, we use the apparatus of intuitionistic fuzzy sets, defined by Atanassov [1, 

2] in 1983 as an extension of the theory of fuzzy sets created by L. Zadeh [28]. 

Let Е be a fixed set. The set А* is called intuitionistic fuzzy set if there is: 

 A={x µA(x), νA(x) | x ∈ E}, (1)  

where functions µA : Е  → [0; 1] and νA : Е  → [0; 1], set respectively the degree of membership 

and non-membership of the elements x ∈ E to the set А, which is a subset of Е and for each  

x ∈ E: 

0 ≤ µA(x) + νA(х) ≤ 1. 

The function πА that sets the degree of uncertainty of the membership of the elements x ∈ E to 

the set А is determined by the formula: 

πА(х) = 1 − µA(x) + νA(х) 

In the case of a fuzzy set πА(х) = 0, for each x ∈ E. 

The comparison between the elements of any two Intuitionistic fuzzy sets, say A and B, 

involves a double comparison between the degree of membership and non-membership of the 

respective elements to the two networks. 

In intuitionistic fuzzy logic (IFL) [4, 6], the degree of membership and non-membership can 

be noted as: 

µ�(�) = �
� , ��(�) = �

�, 
where m is the lower boundary of the “narrow” range; u – the upper boundary of the “broad” 

range; n – the upper boundary of the “narrow” range.  

1.1 Generalized nets 

Generalized nets (GNs) [3, 5, 7] are defined in a way that is principally different from the ways 

of defining the other types of Petri nets. During the time GN have become a tool for modelling 

parallel operating systems. Models for neural networks [8, 9] and data mining methods [11−14] 

have been developed. 

The first basic difference between GNs and ordinary Petri nets is the “place – transition” 

relation. Here the transitions are objects of a more complex nature. A transition may contain m 

input places and n output places where m, n ≥ 1. 

Formally, every transition is described by a seven-tuple (Fig. 1): 

Z = L′, L″, t1, t2, r, M, , 
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Figure 1. A GN-transition 

where: 

(a) L′ and L″ are finite, non-empty sets of places (the transition's input and output places, 

respectively). For the transition in Fig. 1 these are 

 

L′ = { 1 2, ,..., ml l l′ ′ ′ },     L″ = { 1 2, ,..., nl l l′′ ′′ ′′}; 

 

(b) t1 is the current time-moment of the transition’s firing; 

(c) t2 is the current value of the duration of its active state; 

(d) r is the condition of the transition to determine which tokens will pass (or transfer) from the 

inputs to the outputs of the transition; it has the form of an Index Matrix: 

 

r = 

 
1l ′′

 
… jl ′′

 
… 

nl ′′
 

, 

1l′  
 

ri,j 

 

(ri,j – predicate) 

(1 ≤ i ≤ m, 1 ≤ j ≤ n) 

 

⋮ 

il′  

⋮ 

ml′  

ri,j is the predicate that corresponds to the i-th input and j-th output place. When its truth 

value is “true”, a token from the i-th input place transfers to the j-th output place; otherwise, 

this is not possible; 

(e) M is an IM of capacities of transition’s arcs: 

M = 

 1l ′′
 

… jl ′′
 

… 
nl ′′

 

; 

1l′  
 

mi,j 

(mi,j ≥ 0 – natural number) 

(1 ≤ i ≤ m, 1 ≤ j ≤ n) 

 

⋮ 

il′  

⋮ 

ml′  

(f)  is an object of a form similar to a Boolean expression. It may contain as variables the 

symbols that serve as labels for a transition’s input places, and  is an expression built up 

from variables and the Boolean connectives ∧ and ∨ and the semantics of which is defined 

as follows: 
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∧  − every place  must contain at least one token, 

∨  − there must be at least one token in all places  , 

 where  ⊂ L′. When the value of a type (calculated as a Boolean expression) is 

“true”, the transition can become active, otherwise it cannot. 

2 Generalized net model 

 

 

 

 

 

 

 

Figure 2. A Generalized net model of the Stochastic Gradient Descent  

and Dropout Algorithm with intuitionistic fuzzy evaluations 

The following tokens stay in the generalized net. 

• In place SG – one αG token with characteristic “Random number generator” for 

generalizing weight coefficients. 

• In each place SF one αi token, 1 ≤ i ≤ k, with the characteristic “Transfer of a function 

from the i-th layer to the neural network”. 

• In place ST – one αt token with characteristic “Learning objective for neural network 

output”. 

• In place SEZ – one αez token with characteristic “Pre-fixed error in neural network 

training”. 

The generalized net includes the following set of seven transitions: 

А = {Z1, Z2, Z3, Z4, Z5, Z6, Z7}, 

where the following events take place: 

• Z1 – generalizing random vector for values of the weight matrix W; 

• Z2 – calculating the avgK; 

( )
uiii lll ,...,,

21
( )

uiii lll ,...,,
21

( )
uiii lll ,...,,

21
( )

uiii lll ,...,,
21

{ }
uiii lll ,...,,

21
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• Z3 – calculating the gradient;   

• Z4 – calculating the outputs аk = FK(nk) from the k-th layer; 

• Z5 – determining the difference between the received value (SO) and the fixed learning 

target and the least-square error between them; 

• Z6 – determining whether the artificial neural network (ANN) has been learnt or not; 

• Z7 – calculating the new weight coefficients. 

Each of the seven transitions is described below in detail.  

 

Transition Z1 has the following form: 

 

Z1 = {SEN, SG}, {SW, SG}, R1, ∨(SEN, SG), 

where:       

1

,

,
W G

EN

G WG

S S

R S false true

S W true

=  

and WG,W  = “Random vector is generated”. 

At place SW the token obtains the characteristic “weight coefficient W”. 

 

Transition Z2 has the following form: 

 Z2 = {SW, SNW, SDW}, {SD, SFZ, SDW}, R2, ∨(∧(SW, SNW), SDW, 

where:     

6

, ,

,

D FZ DW

W

NW

DW DW D DW FZ

S S S

S false false true
R

S false false true

S W W true

=  

and 

• WDW,D = “the calculated averages values for W are retained to obtain the outputs from the 

layers”, 

• WDW,FZ = “the calculated averages values for W receive an intuitionistic fuzzy estimate 

and are preserved”. 

At place SD the token obtains the characteristic “average value”. 

 

Transition Z3 has the following form: 

 

Z3 = {SD, SAW}, {SA, SAW}, R2, ∨(∧(SD), SAW, 

where:     

3

,

,

A AW

D

AW AAW

S S

S false true
R

S W true
=  

and WAW,A = “the calculated averages for W are retained to obtain the outputs from the layers”. 
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At place SA the token obtains the characteristic “Output of the NN with input DN and weight 

coefficient W”. 

Transition Z4 has the following form: 

Z4 = {SA, SF, SOW}, {SO, SOW}, R4, ∨(∧(SA, SF), SOW), 

where:       

 

4

,

,

O OW

A

F

OW OW O

S S

S false true
R

S false true

S W true

=  

and WOW,O = “The neural layer’s output is calculated”. 

At place SO the token obtains the characteristic “Output of the NN with input AN, weight 

coefficient W and transfer functions F”. 

 

Transition Z5 has the following form: 

Z5 = {SO, ST}, {SE}, R5, ∧(SO, ST), 

where:     

5

,
E

O

T

S

R S true

S true

=  

At place SE the token obtains the characteristic “The value of the least square error in the 

network’s learning”. 

 

Transition Z6 has the following form: 

Z6 = {SE, SEZ, SAL}, {SNL, SL, SAL}, R6, ∧(SE, SEZ, SAL), 

where:      

6

, ,

,

NL L AL

E

EZ

AL AL NL AL L

S S S

S false false true
R

S false false true

S W W true

=  

and 

• WAL,NL = “The NN is not learnt enough”, 

• WAL,L = “ The NN is learnt”.   

At place SNL the token obtains the characteristic: “The value of the received error for 

recalculating the weight coefficients”. 

 

Transition Z7 has the following form: 

Z7 = {SNL, SANW}, {SNW, SANW}, R7, ∧(SNL, SANW), 

where:     
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7

,

,
NW ANW

NL

ANW NWANW

S S

R S false true

S W true

=

 

and 

WANW,NW = “W(n+1) is calculated with the previous values of W(n) from the archives”. 

- total number of neurons – e; 

- number of set values for all neurons in layers – s; 

- number of total values of neurons in the layer – n; 

- number of neurons whose value is greater than the average value for the layer – m; 

- number of neurons whose value is less than the average value for the layer – f. 

Initially, we calculate the average value for the layer, 

���� = �
�� ∑ ���

�
�
�
�
�
�
�
�

. 

We obtain �������, in case when ���� >  ���, we obtain the degree of membership having 

the following form: 

µ"�#�$ =  %&'()*(
�  . 

We obtain �����+, , in case when ���� <  ��� , we obtain the degree of non-membership 

having the following form: 

�"�#�$ =  �����+,
� . 

We obtain �����/0�", in case when  ���� =  ���, we obtain the uncertainty: 

1"�#�$ =  %&'(*23&4
�  . 

The following new values can be obtained: 

Vstrong_opt = µA1(x) + µA2(x) + µA3(x) + … + µn(x)  

– µA1(x)µA2(x) − µA1(x)µA3(x) – µA2(x)µA3(x) − … – µAn−1(x)µAn(x) 

+ … + µA1(x)µA2(x)µA3(x)…µn(x), νA1(x)νA2(x)νA3(x)…νn(x) 

 

Vopt = max(µA1(x)µA2(x)µA3(x)…µn(x)),  min(νA1(x)νA2(x)νA3(x)…νn(x)) 

 

Vavg = (µA1(x) + µA2(x) + µA3(x) + … + µn(x)) / n, (νA1(x) + νA2(x) + νA3(x) + … + νn(x)) / n 

 

Vpes = min(µA1(x)µA2(x)µA3(x)…µn(x)), max(νA1(x)νA2(x)νA3(x)…νn(x)) 

 

Vstrong_pes = µA1(x)µA2(x)µA3(x)…µn(x),  νA1(x) + νA2(x) + νA3(x) + … + νn(x) 

− νA1(x)νA2(x) − νA1(x)νA3(x) – νA2(x)νA3(x) – … − νAn-1(x)νAn(x) 

+ … + νA1(x)νA2(x)νA3(x)…νn(x). 
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3 Conclusions  

A new generalized net model, simulation of the neural network learning process combining the 

Dropout Method and Stochastic Gradient Descent are considered. The model makes it possible 

to consider the different stages in the training of the neural network. An estimation with 

intuitionistic fuzzy sets is used. The intuitionistic fuzzy evaluations reflect the results of the 

system. A degree of uncertainty is also considered in case of insufficient information. A 

generalized net model is used to describe the whole process. 
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