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Abstract: The inequality µ
1
ν + ν

1
µ ≤ 1

2
is introduced and proved, where µ and ν are real

numbers, for which µ, ν ∈ [0, 1] and µ + ν ≤ 1. The same inequality is valid for µ = µA(x),
ν = νA(x), where µA and νA are the membership and the non-membership functions of an
arbitrary intuitionistic fuzzy set A over a fixed universe E and x ∈ E. Also, a generalization of
the above inequality for arbitrary n ≥ 2 is proposed and proved.
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1 Introduction

The Intuitionistic Fuzzy Sets (IFSs) are introduced by K. Atanassov in [1,2] as follows. Let E be
a universal set, µA, νA : E → I := [0, 1] be mappings and for each x ∈ E:

µA(x) + νA(x) ≤ 1. (1)

Then the set
A = {〈x, µA(x), νA(x)〉|x ∈ E}

is called an IFS.
Mappings µA and νA are called membership and non-membership functions for the element

x ∈ E to the set A ⊆ E.
When for each x ∈ E:

µA(x) + νA(x) = 1, (2)

the set A is transformed to the ordinary fuzzy (Zadeh’s) set [4].

53



2 Main results

The main result of the paper is the following Theorem 1.

Theorem 1. Let µ, ν ∈ I be real numbers satisfying inequality

µ+ ν ≤ 1. (3)

Then the inequality

µ
1
ν + ν

1
µ ≤ 1

2
(4)

holds, where the equality is possible if and only if µ = ν =
1

2
.

Before giving the proof of Theorem 1, we need the following lemma.

Lemma. Let the function f be given by

f(x) = (1− x)
1
x := e

ln(1−x)
x . (5)

Then function f is strictly concave on interval (0, 1) and also strictly decreasing on the same
interval. Also, f(1) = 0 and if we define f(0) := lim

x→o+
f(x), then f(0) = 1

e
.

Proof. Using (5) we obtain: (
d

dx

)
f(x) = f(x).

d

dx

(
ln(1− x)

x

)
(6)

and (
d

dx

)2

f(x) = f(x).

(
d

dx

(
ln(1− x)

x

))2

+

(
d

dx

)2(
ln(1− x)

x

)
. (7)

For x ∈ (0, 1) we have

ln(1− x) = −
∞∑
n=0

xn+1

n+ 1
.

Hence,
ln(1− x)

x
= −

∞∑
n=0

xn

n+ 1
. (8)

The series
∞∑
n=0

xn

n+ 1
converges uniformly on each compact set [δ1, δ2], where 0 < δ1 < δ2 < 1.

This follows from Weierstrass criterion for uniform convergence of series (see [3]), since

∞∑
n=0

xn

n+ 1
≤

∞∑
n=0

δn2
n+ 1

,

and the series
∞∑
n=0

δn2
n+ 1

converges (from D’Alembert criterion for convergence of series (see [3]).

Therefore, (8) yields
d

dx

(
ln(1− x)

x

)
= −

∞∑
n=0

(n+ 1)

n+ 2
xn. (9)
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Since, f(x) > 0, formulas (6) and (9) imply that f is strictly decreasing on (0, 1).
The series (9) converges uniformly on each compact set [δ1, δ2], where 0 < δ1 < δ2 < 1.

Therefore, (
d

dx

)2(
ln(1− x)

x

)
= −

∞∑
n=0

(n+ 1)(n+ 2)

n+ 3
xn (10)

and the series (10) converges (from D’Alembert criterion). Then, to prove that f is strictly
concave, we need to prove that (

d

dx

)2

f(x) < 0 (11)

for x ∈ (0, 1). Because of (7), (9) and (10), inequality (11) is equivalent to the inequality(
∞∑
n=0

(n+ 1)

n+ 2
xn

)2

<

∞∑
n=0

(n+ 1)(n+ 2)

n+ 3
xn. (12)

The left-hand side of inequality (12) must be understood as a Cauchy–Mertens multiplication

of the series
∞∑
n=0

(n+ 1)

n+ 2
xn by itself, i.e.,

(
∞∑
n=0

(n+ 1)

n+ 2
xn

)2

=

(
∞∑
n=0

(n+ 1)

n+ 2
xn

)
.

(
∞∑
n=0

(n+ 1)

n+ 2
xn

)

=
∞∑
n=0

(
n∑
k=0

k + 1

k + 2
.
n− k + 1

n− k + 2

)
xn. (13)

From (13), inequality (12) is equivalent to

∞∑
n=0

(
n∑
k=0

k + 1

k + 2
.
n− k + 1

n− k + 2

)
xn <

∞∑
n=0

(n+ 1)(n+ 2)

n+ 3
xn. (14)

To prove (14), it is enough to prove that the inequality

n∑
k=0

k + 1

k + 2
.
n− k + 1

n− k + 2
<

(n+ 1)(n+ 2)

n+ 3
(15)

holds. For this aim, we use the equality

1

n+ 4
.

(
1

k + 2
+

1

n− k + 2

)
=

1

(k + 2)(n− k + 2)
. (16)

Because of (16), we may rewrite (15) in the form

n∑
k=0

1

n+ 4
.

(
1

k + 2
+

1

n− k + 2

)
.(k + 1)(n− k + 1) <

(n+ 1)(n+ 2)

n+ 3
. (17)

But (17) is equivalent to

n∑
k=0

1

n+ 4
.
k + 1

k + 2
.(n− k + 1) +

n∑
k=0

1

n+ 4
.(k + 1).

n− k + 1

n− k + 2
<

(n+ 1)(n+ 2)

n+ 3
. (18)
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Since k + 1

k + 2
< 1 and n− k + 1

n− k + 2
< 1, (18) will be proved if we know that the inequality

1

n+ 4
.

(
n∑
k=0

(n− k + 1) +
n∑
k=0

(k + 1)

)
<

(n+ 1)(n+ 2)

n+ 3
. (19)

holds. But after a simple calculation, the left-hand side of (19) equals to (n+ 1)(n+ 2)

n+ 4
.

This proves (19) since

(n+ 1)(n+ 2)

n+ 4
<

(n+ 1)(n+ 2)

n+ 3
.

Then the above mentioned function f is strictly concave on interval (0, 1). Also,

lim
x→o+

f(x) = lim
x→o+

(1− x)
1
x = lim

y→∞

(
1− 1

y

)y
=

1

e

and the Lemma is proved. �

Corollary 1. If x ∈ (0, 1) and x 6= 1

2
, then

f(x) + f(1− x) < 2f

(
1

2

)
= 2.

1

4
=

1

2
. (20)

When x =
1

2
, (20) is an equality.

Proof. Since f is strictly concave on (0, 1), then

f(x) + f(1− x)
2

< f

(
x+ (1− x)

2

)
= f

(
1

2

)
and (20) holds. �

Corollary 2. If µ, ν ∈ (0, 1) and µ+ ν = 1, then (4) holds.
Proof. If µ = ν =

1

2
, then, obviously, (4) is an equality.

Let µ 6= ν. We put µ = 1− x, ν = x. Hence, x ∈ (0, 1). Since

f(x) + f(1− x) = (1− x)
1
x + x

1
1−x ,

then (20) yields exactly (4). �

We must note that Corollary 2 means that for fuzzy sets (4) is always true for µ, ν ∈ I , since

f(0) =
1

e
<

1

2

and f(1) = 0.

Proof of Theorem 1. From Corollary 1, we have that Theorem 1 is valid for µ+ ν = 1.
Let µ, ν ∈ (0, 1) and µ+ ν < 1. Also, let α = 1− µ. Therefore, α ∈ (0, 1). Then we have

µ
1
α + α

1
µ ≤ 1

2
. (21)
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But, also, we have
0 < ν < α < 1 (22)

and
1 <

1

α
<

1

ν
. (23)

From 0 < µ < 1 and (23) we obtain

µ
1
ν < µ

1
α . (24)

From (22) we obtain
ν

1
µ < α

1
µ . (25)

Now, (24) and (25) yield
µ

1
ν + ν

1
µ < µ

1
α + α

1
µ . (26)

From (21) and (26) inequality (4) holds immediately. Thus, Theorem 1 holds for the case
µ, ν ∈ (0, 1).

It remains only to consider the following cases:

1. µ = 0,

2. µ = 1.

If Case 1 holds, we consider the subcases:

1.1. If ν = 0, then µ
1
ν and ν

1
µ takes the form 0

1
0 , which we may consider (after putting µ = x)

as

lim
x→0+

x
1
x = lim

y→∞

(
1

y

)y
= 0.

Therefore, (4) is obviously true.

1.2. If ν 6= 0 is true, then µ
1
ν = 0

1
ν = 0.

Also, when 0 < ν < 1, ν
1
µ = ν+∞ = 0.

If ν = 1, then ν
1
µ takes the form 1+∞, which we understand (after putting µ = x) as

lim
x→0+

(1− x)
1
x = lim

y→∞

(
1− 1

y

)y
=

1

e
.

Therefore, (4) is true, since 1

e
<

1

2
.

Let Case 2 hold. Then ν = 0, because of the conditions 0 ≤ ν and µ+ ν = 1. Therefore,

ν
1
µ = 01 = 0.

Also, we have that µ
1
ν takes the form 1+∞, which (after putting ν = x) we consider as

lim
x→0+

(1− x)
1
x = lim

y→∞

(
1− 1

y

)y
=

1

e
.

Therefore, (4) is again true and Theorem 1 is proved. �
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Finally, we will give an unexpected form of Theorem 1 for the case of fuzzy sets.

Theorem 2. Let µ, ν ∈ (0, 1) and µ+ ν = 1. Then the inequality

µ1+µ+µ2+··· + ν1+ν+ν
2+··· ≤ 1

2
(27)

holds and the equality is possible if and only if µ = ν =
1

2
.

Proof. We use (4) that is proved in Theorem 1. But since µ + ν = 1, we may rewrite (4) in the
form

µ
1

1−µ + ν
1

1−ν ≤ 1

2
. (28)

Since µ, ν ∈ (0, 1), we have

1

1− µ
= 1 + µ+ µ2 + . . . ,

1

1− ν
= 1 + ν + ν2 + . . . . (29)

Then, from (28) and (29) inequality (27) holds. �

Let us now look at one generalization of (4) for arbitrary n ≥ 2, proving the following
theorem.

Theorem 3. Let n ≥ 2 be an arbitrary integer and xi ∈ (0, 1), i = 1, 2, . . . , n be real numbers,
such that

n∑
i=1

xi = 1. (30)

Then the inequality

(1− x1)
1
x1 + (1− x2)

1
x2 + · · ·+ (1− xn)

1
xn

n
≤
(
1− 1

n

)n
(31)

holds and the equality is possible if and only if x1 = x2 = · · · =
1

n
.

Proof. Since f(x) = (1− x) 1
x is concave on (0, 1), then for arbitrary xi ∈ (0, 1), i = 1, 2, . . . , n

and from (30), we have

f(x1) + f(x2) + · · ·+ f(xn)

n
≤ f

(
x1 + x2 + · · ·+ xn

n

)
= f

(
1

n

)
=

(
1− 1

n

)n
and the equality holds if and only if x1 = x2 = · · · = xn =

1

n
.

If we rewrite (31) in the form

(1− x1)
1
x1 + (1− x2)

1
x2 + · · ·+ (1− xn)

1
xn ≤ n

(
1− 1

n

)n
, (32)

then, for n = 2, putting x1 = ν, x2 = µ, we obtain exactly (4). So, (32) is a generalization of (4)
for arbitrary n ≥ 2.

Since the sequence
{(

1− 1
n

)n}∞
n=1

is strictly increasing and lim
n→+∞

(
1− 1

n

)n
= 1

e
, then as a

corollary of Theorem 3, we obtain the inequality

(1− x1)
1
x1 + (1− x2)

1
x2 + · · ·+ (1− xn)

1
xn

n
<

1

e
. (33)
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But now, we observe that if xi ∈ (0, 1), the (33) holds, i.e., we do not need the condition
x1 + x2 + · · ·+ xn = 1.

Indeed, since f(x) = (1− x) 1
x is strictly decreasing on (0, 1) (see the Lemma), then

(1− xi)
1
xi < lim

x→0+
f(x) =

1

e
.

Therefore, we have

(1− x1)
1
x1 + (1− x2)

1
x2 + · · ·+ (1− xn)

1
xn

n
<

1
e
+ 1

e
+ · · ·+ 1

e

n
=

1

e

and (33) is proved. �

Finally, we must mention that if A is a fixed IFS over a universe E, then we can construct the
following two new sets

B = {〈x, µA(x)
1

νA(x) , νA(x)
1

µA(x) 〉|x ∈ E}

and
C = {〈x, µA(x)

1
νA(x) + νA(x)

1
µA(x) , πA(x)

1
πA(x) 〉|x ∈ E}.

These sets are IFSs, because for each x ∈ E: µA(x)
1

νA(x) , νA(x)
1

µA(x) ∈ [0, 1] and

µA(x)
1

νA(x) + νA(x)
1

µA(x) ≤ µA(x) + νA(x) ≤ 1;

and µA(x)
1

νA(x) + νA(x)
1

µA(x) , πA(x)
1

πA(x) ∈ [0, 1] and

µA(x)
1

νA(x) + νA(x)
1

µA(x) + πA(x)
1

πA(x) ≤ µA(x) + νA(x) + πA(x) = 1.

3 Conclusion

In the second part of the present paper, we will represent a new inequality which one may deduce
with the help of (4) and the well-known Young’s inequality for product. This new inequality also
allows IFS interpretation.
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