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Abstract: The inequality /ﬁ + Vi < % is introduced and proved, where ;4 and v are real
numbers, for which p, v € [0,1] and p + v < 1. The same inequality is valid for u = pa(x),
v = va(x), where s and v4 are the membership and the non-membership functions of an
arbitrary intuitionistic fuzzy set A over a fixed universe £ and x € E. Also, a generalization of
the above inequality for arbitrary n > 2 is proposed and proved.
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1 Introduction

The Intuitionistic Fuzzy Sets (IFSs) are introduced by K. Atanassov in [1,2] as follows. Let ' be
a universal set, 14,4 : E — I := [0, 1] be mappings and for each = € E:

pa(z) +va(z) < 1. (1)

Then the set
A= {{z, pa(x), va(z))|z € E}
is called an IFS.
Mappings 4 and v4 are called membership and non-membership functions for the element
z € Ftotheset A C F.
When for each z € E:

pa(w) +va(z) =1, (2)
the set A is transformed to the ordinary fuzzy (Zadeh’s) set [4].
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2 Main results

The main result of the paper is the following Theorem 1.

Theorem 1. Let 1, v € I be real numbers satisfying inequality

p+rv <l (3)

Then the inequality
,u% F v <

N —
—
i
SN—

holds, where the equality is possible if and only if p = v = %

Before giving the proof of Theorem 1, we need the following lemma.

Lemma. Let the function f be given by

In(l1—=z)

fla)y=(1-a)r=e = . (5)

Then function f is strictly concave on interval (0,1) and also strictly decreasing on the same
interval. Also, f(1) = 0 and if we define f(0) := lim f(z), then f(0) = -

Tr—0
Proof. Using (5) we obtain:

and

(%)Zf(w)=f(x). (4 (1“1‘””)) ( (), )

For z € (0,1) we have

n(l—uxz) i":

Hence,
n

l (1—x) =z
Zn—l—

n=0

(8)

—_

n

o0
The series ) nx [ converges uniformly on each compact set [01, d5], where 0 < §; < do < 1.
n=0

This follows from Weierstrass criterion for uniform convergence of series (see [3]), since

Zn—i—l Z

n=0 n:0

N3

n

and the series Z
n=0"
Therefore, (8) yields

T converges (from D’ Alembert criterion for convergence of series (see [3]).

(o) Fen
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Since, f(x) > 0, formulas (6) and (9) imply that f is strictly decreasing on (0, 1).
The series (9) converges uniformly on each compact set [y, J2], where 0 < §; < dy < 1.

(&) (52) - g

n=0

Therefore,

and the series (10) converges (from D’Alembert criterion). Then, to prove that f is strictly
concave, we need to prove that

(%) f@) <0 (11)

for xz € (0, 1). Because of (7), (9) and (10), inequality (11) is equivalent to the inequality

(n+1) , ~(n+1)(n+2) ,
<§:7r+2 ) <§: n+3 (12)

n=0 n=
The left- hand side of inequality (12) must be understood as a Cauchy—Mertens multiplication

of the series Z —s 2)x by itself, i.e.,

2
—~(n+D) ) [+ D —(n+1) ,
(E5) - (B 5) (S55)
=k +ln—k+1Y)
:;%<k:0k:+2'n—k:+2>x' (13)

From (13), inequality (12) is equivalent to

Z( k:+1'n—k:+1)xn<z(n+1)(n—|—2)xn' 14
k

— :Ok:+2n—k:+2

To prove (14), it is enough to prove that the inequality

~k+1n—Fk+1 1 2
Z tln—k+1 (n+1)(n+2) (15)
k:0k+2 n—=Fk+2 n+3
holds. For this aim, we use the equality
1 1 n 1 B 1 (16)
n+4 \k+2 n—-k+2) (k+2)(n—k+2)

Because of (16), we may rewrite (15) in the form

n

3 ! ( L ).(k;+1)(n—k+1)<("H)(””). (17)

k:0n+4 kE+2 n—k+2 n+3

But (17) is equivalent to

"1 k+1 1 n—k+1 (n+1)(n+2)
—(n—k+1 (k+1). < )
§n+4k+2(n + )+k:0n+4( + )n—k—i—Q n+3

(18)
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k+1 n—k+1

Since 3 < 1 and < 1, (18) will be proved if we know that the inequality

+ 2 n—k+2
ni4. (Z(n k1)t i(m 1)) PG +nl)+(7”;+2). (19)
k=0 k=0

holds. But after a simple calculation, the left-hand side of (19) equals to %

This proves (19) since

(n+1)(n+2) _ (n+1)(n+2)
n+4 n+3 '

Then the above mentioned function f is strictly concave on interval (0, 1). Also,

1\’ 1

lim f(z) = lim (1—x)% = lim (1——) =-

z—o™t z—o™t Y—0o0 Yy e

and the Lemma is proved. U
Corollary 1. If x € (0,1) and © # % then

1 1 1
11— 2f 1 =) =2.—- = —. 2
F)+fa-a) <2f (3) =25 = (20)
When © = %, (20) is an equality.
Proof. Since f is strictly concave on (0, 1), then

e efion (et U0 (1)

2 2

and (20) holds. O

Corollary 2. If i, v € (0,1) and ju + v = 1, then (4) holds.
Proof. If p=v = %, then, obviously, (4) is an equality.
Let 4 # v. Weput u = 1 — z, v = z. Hence, x € (0, 1). Since

F@)+ fl—2)=(1—2)7 + 27>,

then (20) yields exactly (4). O

We must note that Corollary 2 means that for fuzzy sets (4) is always true for u, v € I, since

and f(1) =0.

Proof of Theorem 1. From Corollary 1, we have that Theorem 1 is valid for p + v = 1.
Let u,v € (0,1) and u + v < 1. Also, let « = 1 — p. Therefore, a € (0, 1). Then we have

. (21)

N | =

1 1
/1/04 —i—Oéll S
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But, also, we have

O<rv<a<l (22)
and
1 1
l<—< - (23)
(07 14

From 0 < ¢ < 1 and (23) we obtain

< e (24)
From (22) we obtain
ve < am. (25)
Now, (24) and (25) yield
©r v < pE 4 ak. (26)

From (21) and (26) inequality (4) holds immediately. Thus, Theorem 1 holds for the case
w,v € (0,1).
It remains only to consider the following cases:

1. u=0,
2. p=1.
If Case 1 holds, we consider the subcases:

1.1. If v = 0, then ,u% and v+ takes the form 05, which we may consider (after putting © = x)

1 Yy
lim x% = lim (—) =0.
z—0+ y—oo \ Y

Therefore, (4) is obviously true.

as

1.2. If v # 0 is true, then u% = 0v = 0.
Also, when 0 < v < 1, v = oo — ),
If v = 1, then V% takes the form 17°°, which we understand (after putting ;. = x) as

1\ 1
lim (1—x)% = lim (1——) = —.

z—0t y—r00

. . 1 1

Therefore, (4) is true, since - < 3

Let Case 2 hold. Then v = 0, because of the conditions 0 < v and p + v = 1. Therefore,
1

ve =0 =0.

Also, we have that /ﬁ takes the form 17°°, which (after putting v = x) we consider as
N 1
lim (1 —2)7 = lim (1 - —> =
z—07t Yy—0o0 Yy e
Therefore, (4) is again true and Theorem 1 is proved. U
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Finally, we will give an unexpected form of Theorem 1 for the case of fuzzy sets.
Theorem 2. Let ji,v € (0,1) and p+ v = 1. Then the inequality

u1+u+u2+--- 4 V1+1/+112+--- < % (27)
holds and the equality is possible if and only if | = v = %
Proof. We use (4) that is proved in Theorem 1. But since p + v = 1, we may rewrite (4) in the

form ]
,uﬁ LT < 5 (28)
Since p1, v € (0,1), we have
1 2 1 2
——=1l4pu+p+..., —=14+v+v°+.... (29)
1—p 1—v
Then, from (28) and (29) inequality (27) holds. O
Let us now look at one generalization of (4) for arbitrary n > 2, proving the following
theorem.
Theorem 3. Let n > 2 be an arbitrary integer and x; € (0,1),i = 1,2,...,n be real numbers,
such that

zn:xi =1 (30)

Then the inequality

(1—.T1)Il+<1—:C2)nzz—|—..._|_(1_xn)znS(l_%)n (31)

holds and the equality is possible if and only if v1 = x5 = --- = —.
Proof. Since f(x) = (1 — x)% is concave on (0, 1), then for arbitrary x; € (0,1),i = 1,2,...,n
and from (30), we have

) + fzo) + -+ flzn) §f<x1+x2+...+xn> =f<%> B <1_%>n

n n
and the equality holds ifand only if 2, = 2 = --- = 2, = %
If we rewrite (31) in the form
1 1 a1 1\"
(1—1’1)11+(1—$2)12+"'+<1—$n)$" Sn 1—5 , (32)

then, for n = 2, putting x; = v, o = u, we obtain exactly (4). So, (32) is a generalization of (4)

for arbitrary n > 2.

. 1 ny oo . . . . . 1 n o l
Since the sequence {(1 — 5) }n:1 is strictly increasing and nEIJPoo (1 — 5) = ¢, thenasa

corollary of Theorem 3, we obtain the inequality

1 1 1
L—a)m + (1 —@9)o 4+ (L =)o 1

n €
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But now, we observe that if x; € (0,1), the (33) holds, i.e., we do not need the condition
T+ x4+ -+ a1, =10
Indeed, since f(z) = (1 — z)* is strictly decreasing on (0, 1) (see the Lemma), then
1 1
(1—z;)* < lim f(x)=-.
e

z—0t

Therefore, we have

(1= 21)7 + (1 —22)7 + - + (1 — 2,) 7 _itihetg
n n e

and (33) is proved. O
Finally, we must mention that if A is a fixed IFS over a universe £, then we can construct the
following two new sets

B = {{z, pa(x) 2T, va(2) 72D )|z € E}
and ) )
C = {{(z, pa(x) 2@ + vy(x)ra@ my(x) 2@ )|z € E}.

These sets are IFSs, because for each x € E: ,uA(x)ﬁ, va(x) " € [0,1] and

pa(2) AT + vy(2) 7T < (@) + vale) < 1;
1

and ,uA(x)ﬁ + VA(.%)“AI(Z) ,ma(z)™a@ € [0, 1] and

1 1 1
pa(@) a4 va(x)Fa® 4+ ma(x) 74 < pa(z) + vale) + malz) = 1.

3 Conclusion

In the second part of the present paper, we will represent a new inequality which one may deduce
with the help of (4) and the well-known Young’s inequality for product. This new inequality also
allows IFS interpretation.

References

[1]  Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer,
Heidelberg.

[2]  Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
[3] Fikhtengolts, G. (1965). The Fundamentals of Mathematical Analysis. Vol. 2, Elsevier.

[4]  Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

59



