Note on one inequality and its application in intuitionistic fuzzy sets theory. Part 1

Mladen V. Vassilev-Missana
5 Victor Hugo Str., Sofia, Bulgaria
e-mail: missana@abv.bg

Abstract

The inequality $\mu^{\frac{1}{\nu}}+\nu^{\frac{1}{\mu}} \leq \frac{1}{2}$ is introduced and proved, where μ and ν are real numbers, for which $\mu, \nu \in[0,1]$ and $\mu+\nu \leq 1$. The same inequality is valid for $\mu=\mu_{A}(x)$, $\nu=\nu_{A}(x)$, where μ_{A} and ν_{A} are the membership and the non-membership functions of an arbitrary intuitionistic fuzzy set A over a fixed universe E and $x \in E$. Also, a generalization of the above inequality for arbitrary $n \geq 2$ is proposed and proved.

Keywords: Inequality, Intuitionistic fuzzy sets.
2010 Mathematics Subject Classification: 03E72.

1 Introduction

The Intuitionistic Fuzzy Sets (IFSs) are introduced by K. Atanassov in [1,2] as follows. Let E be a universal set, $\mu_{A}, \nu_{A}: E \rightarrow I:=[0,1]$ be mappings and for each $x \in E$:

$$
\begin{equation*}
\mu_{A}(x)+\nu_{A}(x) \leq 1 . \tag{1}
\end{equation*}
$$

Then the set

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\}
$$

is called an IFS.
Mappings μ_{A} and ν_{A} are called membership and non-membership functions for the element $x \in E$ to the set $A \subseteq E$.

When for each $x \in E$:

$$
\begin{equation*}
\mu_{A}(x)+\nu_{A}(x)=1, \tag{2}
\end{equation*}
$$

the set A is transformed to the ordinary fuzzy (Zadeh's) set [4].

2 Main results

The main result of the paper is the following Theorem 1.
Theorem 1. Let $\mu, \nu \in I$ be real numbers satisfying inequality

$$
\begin{equation*}
\mu+\nu \leq 1 . \tag{3}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
\mu^{\frac{1}{\nu}}+\nu^{\frac{1}{\mu}} \leq \frac{1}{2} \tag{4}
\end{equation*}
$$

holds, where the equality is possible if and only if $\mu=\nu=\frac{1}{2}$.
Before giving the proof of Theorem 1, we need the following lemma.
Lemma. Let the function f be given by

$$
\begin{equation*}
f(x)=(1-x)^{\frac{1}{x}}:=e^{\frac{\ln (1-x)}{x}} . \tag{5}
\end{equation*}
$$

Then function f is strictly concave on interval $(0,1)$ and also strictly decreasing on the same interval. Also, $f(1)=0$ and if we define $f(0):=\lim _{x \rightarrow o^{+}} f(x)$, then $f(0)=\frac{1}{e}$.
Proof. Using (5) we obtain:

$$
\begin{equation*}
\left(\frac{d}{d x}\right) f(x)=f(x) \cdot \frac{d}{d x}\left(\frac{\ln (1-x)}{x}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{d}{d x}\right)^{2} f(x)=f(x) \cdot\left(\frac{d}{d x}\left(\frac{\ln (1-x)}{x}\right)\right)^{2}+\left(\frac{d}{d x}\right)^{2}\left(\frac{\ln (1-x)}{x}\right) . \tag{7}
\end{equation*}
$$

For $x \in(0,1)$ we have

$$
\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}
$$

Hence,

$$
\begin{equation*}
\frac{\ln (1-x)}{x}=-\sum_{n=0}^{\infty} \frac{x^{n}}{n+1} . \tag{8}
\end{equation*}
$$

The series $\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}$ converges uniformly on each compact set $\left[\delta_{1}, \delta_{2}\right]$, where $0<\delta_{1}<\delta_{2}<1$. This follows from Weierstrass criterion for uniform convergence of series (see [3]), since

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n+1} \leq \sum_{n=0}^{\infty} \frac{\delta_{2}^{n}}{n+1}
$$

and the series $\sum_{n=0}^{\infty} \frac{\delta_{2}^{n}}{n+1}$ converges (from D'Alembert criterion for convergence of series (see [3]). Therefore, (8) yields

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{\ln (1-x)}{x}\right)=-\sum_{n=0}^{\infty} \frac{(n+1)}{n+2} x^{n} . \tag{9}
\end{equation*}
$$

Since, $f(x)>0$, formulas (6) and (9) imply that f is strictly decreasing on $(0,1)$.
The series (9) converges uniformly on each compact set [δ_{1}, δ_{2}, where $0<\delta_{1}<\delta_{2}<1$. Therefore,

$$
\begin{equation*}
\left(\frac{d}{d x}\right)^{2}\left(\frac{\ln (1-x)}{x}\right)=-\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{n+3} x^{n} \tag{10}
\end{equation*}
$$

and the series (10) converges (from D'Alembert criterion). Then, to prove that f is strictly concave, we need to prove that

$$
\begin{equation*}
\left(\frac{d}{d x}\right)^{2} f(x)<0 \tag{11}
\end{equation*}
$$

for $x \in(0,1)$. Because of $(7),(9)$ and (10), inequality (11) is equivalent to the inequality

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} \frac{(n+1)}{n+2} x^{n}\right)^{2}<\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{n+3} x^{n} . \tag{12}
\end{equation*}
$$

The left-hand side of inequality (12) must be understood as a Cauchy-Mertens multiplication of the series $\sum_{n=0}^{\infty} \frac{(n+1)}{n+2} x^{n}$ by itself, i.e.,

$$
\begin{align*}
\left(\sum_{n=0}^{\infty} \frac{(n+1)}{n+2} x^{n}\right)^{2} & =\left(\sum_{n=0}^{\infty} \frac{(n+1)}{n+2} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} \frac{(n+1)}{n+2} x^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{k+1}{k+2} \cdot \frac{n-k+1}{n-k+2}\right) x^{n} . \tag{13}
\end{align*}
$$

From (13), inequality (12) is equivalent to

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{k+1}{k+2} \cdot \frac{n-k+1}{n-k+2}\right) x^{n}<\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{n+3} x^{n} . \tag{14}
\end{equation*}
$$

To prove (14), it is enough to prove that the inequality

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{k+1}{k+2} \cdot \frac{n-k+1}{n-k+2}<\frac{(n+1)(n+2)}{n+3} \tag{15}
\end{equation*}
$$

holds. For this aim, we use the equality

$$
\begin{equation*}
\frac{1}{n+4} \cdot\left(\frac{1}{k+2}+\frac{1}{n-k+2}\right)=\frac{1}{(k+2)(n-k+2)} . \tag{16}
\end{equation*}
$$

Because of (16), we may rewrite (15) in the form

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{n+4} \cdot\left(\frac{1}{k+2}+\frac{1}{n-k+2}\right) \cdot(k+1)(n-k+1)<\frac{(n+1)(n+2)}{n+3} . \tag{17}
\end{equation*}
$$

But (17) is equivalent to

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{1}{n+4} \cdot \frac{k+1}{k+2} \cdot(n-k+1)+\sum_{k=0}^{n} \frac{1}{n+4} \cdot(k+1) \cdot \frac{n-k+1}{n-k+2}<\frac{(n+1)(n+2)}{n+3} . \tag{18}
\end{equation*}
$$

Since $\frac{k+1}{k+2}<1$ and $\frac{n-k+1}{n-k+2}<1$, (18) will be proved if we know that the inequality

$$
\begin{equation*}
\frac{1}{n+4} \cdot\left(\sum_{k=0}^{n}(n-k+1)+\sum_{k=0}^{n}(k+1)\right)<\frac{(n+1)(n+2)}{n+3} . \tag{19}
\end{equation*}
$$

holds. But after a simple calculation, the left-hand side of (19) equals to $\frac{(n+1)(n+2)}{n+4}$.
This proves (19) since

$$
\frac{(n+1)(n+2)}{n+4}<\frac{(n+1)(n+2)}{n+3}
$$

Then the above mentioned function f is strictly concave on interval $(0,1)$. Also,

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(1-x)^{\frac{1}{x}}=\lim _{y \rightarrow \infty}\left(1-\frac{1}{y}\right)^{y}=\frac{1}{e}
$$

and the Lemma is proved.
Corollary 1. If $x \in(0,1)$ and $x \neq \frac{1}{2}$, then

$$
\begin{equation*}
f(x)+f(1-x)<2 f\left(\frac{1}{2}\right)=2 \cdot \frac{1}{4}=\frac{1}{2} . \tag{20}
\end{equation*}
$$

When $x=\frac{1}{2},(20)$ is an equality.
Proof. Since f is strictly concave on $(0,1)$, then

$$
\frac{f(x)+f(1-x)}{2}<f\left(\frac{x+(1-x)}{2}\right)=f\left(\frac{1}{2}\right)
$$

and (20) holds.
Corollary 2. If $\mu, \nu \in(0,1)$ and $\mu+\nu=1$, then (4) holds.
Proof. If $\mu=\nu=\frac{1}{2}$, then, obviously, (4) is an equality.
Let $\mu \neq \nu$. We put $\mu=1-x, \nu=x$. Hence, $x \in(0,1)$. Since

$$
f(x)+f(1-x)=(1-x)^{\frac{1}{x}}+x^{\frac{1}{1-x}}
$$

then (20) yields exactly (4).
We must note that Corollary 2 means that for fuzzy sets (4) is always true for $\mu, \nu \in I$, since

$$
f(0)=\frac{1}{e}<\frac{1}{2}
$$

and $f(1)=0$.
Proof of Theorem 1. From Corollary 1, we have that Theorem 1 is valid for $\mu+\nu=1$.
Let $\mu, \nu \in(0,1)$ and $\mu+\nu<1$. Also, let $\alpha=1-\mu$. Therefore, $\alpha \in(0,1)$. Then we have

$$
\begin{equation*}
\mu^{\frac{1}{\alpha}}+\alpha^{\frac{1}{\mu}} \leq \frac{1}{2} \tag{21}
\end{equation*}
$$

But, also, we have

$$
\begin{equation*}
0<\nu<\alpha<1 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
1<\frac{1}{\alpha}<\frac{1}{\nu} . \tag{23}
\end{equation*}
$$

From $0<\mu<1$ and (23) we obtain

$$
\begin{equation*}
\mu^{\frac{1}{\nu}}<\mu^{\frac{1}{\alpha}} \tag{24}
\end{equation*}
$$

From (22) we obtain

$$
\begin{equation*}
\nu^{\frac{1}{\mu}}<\alpha^{\frac{1}{\mu}} . \tag{25}
\end{equation*}
$$

Now, (24) and (25) yield

$$
\begin{equation*}
\mu^{\frac{1}{\nu}}+\nu^{\frac{1}{\mu}}<\mu^{\frac{1}{\alpha}}+\alpha^{\frac{1}{\mu}} . \tag{26}
\end{equation*}
$$

From (21) and (26) inequality (4) holds immediately. Thus, Theorem 1 holds for the case $\mu, \nu \in(0,1)$.

It remains only to consider the following cases:

1. $\mu=0$,
2. $\mu=1$.

If Case 1 holds, we consider the subcases:
1.1. If $\nu=0$, then $\mu^{\frac{1}{\nu}}$ and $\nu^{\frac{1}{\mu}}$ takes the form $0^{\frac{1}{0}}$, which we may consider (after putting $\mu=x$) as

$$
\lim _{x \rightarrow 0^{+}} x^{\frac{1}{x}}=\lim _{y \rightarrow \infty}\left(\frac{1}{y}\right)^{y}=0
$$

Therefore, (4) is obviously true.
1.2. If $\nu \neq 0$ is true, then $\mu^{\frac{1}{\nu}}=0^{\frac{1}{\nu}}=0$.

Also, when $0<\nu<1, \nu^{\frac{1}{\mu}}=\nu^{+\infty}=0$.
If $\nu=1$, then $\nu^{\frac{1}{\mu}}$ takes the form $1^{+\infty}$, which we understand (after putting $\mu=x$) as

$$
\lim _{x \rightarrow 0^{+}}(1-x)^{\frac{1}{x}}=\lim _{y \rightarrow \infty}\left(1-\frac{1}{y}\right)^{y}=\frac{1}{e} .
$$

Therefore, (4) is true, since $\frac{1}{e}<\frac{1}{2}$.
Let Case 2 hold. Then $\nu=0$, because of the conditions $0 \leq \nu$ and $\mu+\nu=1$. Therefore,

$$
\nu^{\frac{1}{\mu}}=0^{1}=0 .
$$

Also, we have that $\mu^{\frac{1}{\nu}}$ takes the form $1^{+\infty}$, which (after putting $\nu=x$) we consider as

$$
\lim _{x \rightarrow 0^{+}}(1-x)^{\frac{1}{x}}=\lim _{y \rightarrow \infty}\left(1-\frac{1}{y}\right)^{y}=\frac{1}{e} .
$$

Therefore, (4) is again true and Theorem 1 is proved.

Finally, we will give an unexpected form of Theorem 1 for the case of fuzzy sets.
Theorem 2. Let $\mu, \nu \in(0,1)$ and $\mu+\nu=1$. Then the inequality

$$
\begin{equation*}
\mu^{1+\mu+\mu^{2}+\cdots}+\nu^{1+\nu+\nu^{2}+\cdots} \leq \frac{1}{2} \tag{27}
\end{equation*}
$$

holds and the equality is possible if and only if $\mu=\nu=\frac{1}{2}$.
Proof. We use (4) that is proved in Theorem 1. But since $\mu+\nu=1$, we may rewrite (4) in the form

$$
\begin{equation*}
\mu^{\frac{1}{1-\mu}}+\nu^{\frac{1}{1-\nu}} \leq \frac{1}{2} \tag{28}
\end{equation*}
$$

Since $\mu, \nu \in(0,1)$, we have

$$
\begin{equation*}
\frac{1}{1-\mu}=1+\mu+\mu^{2}+\ldots, \frac{1}{1-\nu}=1+\nu+\nu^{2}+\ldots \tag{29}
\end{equation*}
$$

Then, from (28) and (29) inequality (27) holds.
Let us now look at one generalization of (4) for arbitrary $n \geq 2$, proving the following theorem.

Theorem 3. Let $n \geq 2$ be an arbitrary integer and $x_{i} \in(0,1), i=1,2, \ldots, n$ be real numbers, such that

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}=1 \tag{30}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
\frac{\left(1-x_{1}\right)^{\frac{1}{x_{1}}}+\left(1-x_{2}\right)^{\frac{1}{x_{2}}}+\cdots+\left(1-x_{n}\right)^{\frac{1}{x_{n}}}}{n} \leq\left(1-\frac{1}{n}\right)^{n} \tag{31}
\end{equation*}
$$

holds and the equality is possible if and only if $x_{1}=x_{2}=\cdots=\frac{1}{n}$.
Proof. Since $f(x)=(1-x)^{\frac{1}{x}}$ is concave on $(0,1)$, then for arbitrary $x_{i} \in(0,1), i=1,2, \ldots, n$ and from (30), we have

$$
\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n} \leq f\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)=f\left(\frac{1}{n}\right)=\left(1-\frac{1}{n}\right)^{n}
$$

and the equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}=\frac{1}{n}$.
If we rewrite (31) in the form

$$
\begin{equation*}
\left(1-x_{1}\right)^{\frac{1}{x_{1}}}+\left(1-x_{2}\right)^{\frac{1}{x_{2}}}+\cdots+\left(1-x_{n}\right)^{\frac{1}{x_{n}}} \leq n\left(1-\frac{1}{n}\right)^{n} \tag{32}
\end{equation*}
$$

then, for $n=2$, putting $x_{1}=\nu, x_{2}=\mu$, we obtain exactly (4). So, (32) is a generalization of (4) for arbitrary $n \geq 2$.

Since the sequence $\left\{\left(1-\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is strictly increasing and $\lim _{n \rightarrow+\infty}\left(1-\frac{1}{n}\right)^{n}=\frac{1}{e}$, then as a corollary of Theorem 3, we obtain the inequality

$$
\begin{equation*}
\frac{\left(1-x_{1}\right)^{\frac{1}{x_{1}}}+\left(1-x_{2}\right)^{\frac{1}{x_{2}}}+\cdots+\left(1-x_{n}\right)^{\frac{1}{x_{n}}}}{n}<\frac{1}{e} \tag{33}
\end{equation*}
$$

But now, we observe that if $x_{i} \in(0,1)$, the (33) holds, i.e., we do not need the condition $x_{1}+x_{2}+\cdots+x_{n}=1$.

Indeed, since $f(x)=(1-x)^{\frac{1}{x}}$ is strictly decreasing on $(0,1)$ (see the Lemma), then

$$
\left(1-x_{i}\right)^{\frac{1}{x_{i}}}<\lim _{x \rightarrow 0^{+}} f(x)=\frac{1}{e} .
$$

Therefore, we have

$$
\frac{\left(1-x_{1}\right)^{\frac{1}{x_{1}}}+\left(1-x_{2}\right)^{\frac{1}{x_{2}}}+\cdots+\left(1-x_{n}\right)^{\frac{1}{x_{n}}}}{n}<\frac{\frac{1}{e}+\frac{1}{e}+\cdots+\frac{1}{e}}{n}=\frac{1}{e}
$$

and (33) is proved.
Finally, we must mention that if A is a fixed IFS over a universe E, then we can construct the following two new sets

$$
B=\left\{\left.\left\langle x, \mu_{A}(x)^{\frac{1}{\nu_{A}(x)}}, \nu_{A}(x)^{\frac{1}{\mu_{A}(x)}}\right\rangle \right\rvert\, x \in E\right\}
$$

and

$$
C=\left\{\left.\left\langle x, \mu_{A}(x)^{\frac{1}{\nu_{A}(x)}}+\nu_{A}(x)^{\frac{1}{\mu_{A}(x)}}, \pi_{A}(x)^{\frac{1}{\pi_{A}(x)}}\right\rangle \right\rvert\, x \in E\right\} .
$$

These sets are IFSs, because for each $x \in E: \mu_{A}(x)^{\frac{1}{\nu_{A}(x)}}, \nu_{A}(x)^{\frac{1}{\mu_{A}(x)}} \in[0,1]$ and

$$
\mu_{A}(x)^{\frac{1}{\nu_{A}(x)}}+\nu_{A}(x)^{\frac{1}{\mu_{A}(x)}} \leq \mu_{A}(x)+\nu_{A}(x) \leq 1 ;
$$

and $\mu_{A}(x)^{\frac{1}{\nu_{A}(x)}}+\nu_{A}(x)^{\frac{1}{\mu_{A}(x)}}, \pi_{A}(x)^{\frac{1}{\pi_{A}(x)}} \in[0,1]$ and

$$
\mu_{A}(x)^{\frac{1}{\mu_{A}(x)}}+\nu_{A}(x)^{\frac{1}{\mu_{A}(x)}}+\pi_{A}(x)^{\frac{1}{\pi_{A}(x)}} \leq \mu_{A}(x)+\nu_{A}(x)+\pi_{A}(x)=1
$$

3 Conclusion

In the second part of the present paper, we will represent a new inequality which one may deduce with the help of (4) and the well-known Young's inequality for product. This new inequality also allows IFS interpretation.

References

[1] Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg.
[2] Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
[3] Fikhtengolts, G. (1965). The Fundamentals of Mathematical Analysis. Vol. 2, Elsevier.
[4] Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

