
Notes on Intuitionistic Fuzzy Sets
Print ISSN 1310–4926, Online ISSN 2367–8283
Vol. 27, 2021, No. 4, 20–29
DOI: 10.7546/nifs.2021.27.4.20-29

Modifications of the Goguen’s
intuitionistic fuzzy implication

Janusz Kacprzyk1, Katarı́na Čunderlı́ková2,
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1 Introduction

In [6], an intuitionistic fuzzy form of the Joseph Amadee Goguen’s (28 June 1941 – 3 July
2006) implication is given and some of its basic properties are studied. Its name is related to
the following fuzzy implication (see, e.g., [9]):

a→ b =

 1, if a ≤ b

b

a
, otherwise

.

Here, following and combining ideas from [4, 6, 8, 11], we are going to construct 7 new
implications, related to the Goguen’s intuitionistic fuzzy implication.

2 Preliminary results

In the beginning, the necessary concepts from Intuitionistic Fuzzy Pairs theory will be given,
following [5, 7].

In some definitions we are using functions sg and sg defined by:

sg(x) =

{
1 if x > 0

0 if x ≤ 0
,

sg(x) =

{
0 if x > 0

1 if x ≤ 0
.

Let everywhere intuituinistic fuzzy truth values of variables x and y be:

x = 〈a, b〉,
y = 〈c, d〉.

In [7], these pairs are called Intuituinistic Fuzzy Pairs (IFPs).
The IFP 〈a, b〉 is:

• a tautology if and only if (iff) a = 1 and b = 0;

• an intuitionistic fuzzy tautology (IFT) iff a ≤ c & b ≥ d.

For two IFPs x and y:
x ≤ y iff a ≤ c and b ≥ d.

Let everywhere below we suppose that for each p > 0 the following condition holds:

sg(0)
p

0
= 0. (∗)

The Goguen’s intuitionistic fuzzy implications was defined in [6] for the IFPs x and y as:

〈a, b〉 → 〈c, d〉 =
〈
sg(a− c) + sg(a− c) c

1− b
, sg(a− c)a− c

1− b

〉
.
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Let us define the empty IFP, the totally uncertain IFP, and the unit IFP (see [7, 5]) by:

O∗ = 〈0, 1〉,
U∗ = 〈0, 0〉,
E∗ = 〈1, 0〉.

Over a fixed IFP x a number of standard and extended modal operators have been defined (see
[5]). Here, we use only four of them:

�x = 〈a, 1− a〉,
♦x = 〈1− b, b〉,

+A =

〈
µ

2
,
ν + 1

2

〉
,

×A =

〈
µ+ 1

2
,
ν

2

〉
.

3 Main results

In [8], if ⊃ is a fixed implication, the following new modal implication can be introduced:

x→ y = (x ⊃ y),

where x and y are propositional variables, i.e., having IFP-representation.
Having the Goguen’s intuitionistic fuzzy implication (→G) and following [4], we will construct

eight new implications, but as we will see below, one of them (the last one) is trivial and it will
be omitted.

〈a, b〉 →∗
1 〈c, d〉 = �〈a, b〉 →G �〈c, d〉

=
〈
sg(a− c) + sg(a− c) c

a
, sg(a− c)a− c

a

〉
,

〈a, b〉 →∗
2 〈c, d〉 = �〈a, b〉 →G ♦〈c, d〉

=
〈
sg(a+ d− 1) + sg(a+ d− 1)

1− d
a

, sg(a+ d− 1)
a+ d− 1

a

〉
,

〈a, b〉 →∗
3 〈c, d〉 = ♦〈a, b〉 →G ♦〈c, d〉

=
〈
sg(d− b) + sg(d− b)1− d

1− b
, sg(d− b)d− b

1− b

〉
,

〈a, b〉 →∗
4 〈c, d〉 = ♦〈a, b〉 →G �〈c, d〉

=
〈
sg(1− b− c) + sg(1− b− c) c

1− b
, sg(1− b− c)1− b− c

1− b

〉
,

〈a, b〉 →∗
5 〈c, d〉 = +〈a, b〉 →G +〈c, d〉

=
〈
sg(a− c) + sg(a− c) c

1− b
, sg(a− c)a− c

1− b

〉
,

〈a, b〉 →∗
6 〈c, d〉 = +〈a, b〉 →G ×〈c, d〉

=
〈
sg(a− c) + sg(a− c)c+ 1

2− b
, sg(a− c)a− c

2− b

〉
,
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〈a, b〉 →∗
7 〈c, d〉 = ×〈a, b〉 →G +〈c, d〉 =

〈 c

2− b
,
a+ 1− c
2− b

〉
,

〈a, b〉 →∗
8 〈c, d〉 = ×〈a, b〉 →G ×〈c, d〉 = 〈1, 0〉.

As we mentioned above, the result of implication →∗
8 is a constant and by this reason, we

eliminate it.
First, we check that the definitions are correct.
For implication→∗

1, we obtain.
First, let

X ≡ sg(a− c) + sg(a− c) c
a
,

Y ≡ sg(a− c)a− c
a

,

Z ≡ X + Y = sg(a− c) + sg(a− c) c
a
+ sg(a− c)a− c

a
.

If a > c, then sg(a− c) = 1, sg(a− c) = 0 and hence

0 ≤ X = 0 +
c

a
< 1,

Y =
a− c
a

,

Z =
c

a
+
a− c
a

= 1.

If a ≤ c, then sg(a− c) = 0, sg(a− c) = 1 and hence

X = 1,

Y = 0,

Z = 1,

i.e., the implication→∗
1 is correct. By the same manner, we check of the correctness of the rest

implications.
Second, for the basic properties of implications we obtain that:

O∗ →∗
i O

∗ for i = 1, 2, 3, 4, 5, 6,

O∗ →∗
i U

∗ for i = 1, 2, 3, 4, 5, 6,

O∗ →∗
i E

∗ for i = 1, 2, 3, 4, 5, 6, 7,

U∗ →∗
i O

∗ for i = 1, 2, 5, 6,

U∗ →∗
i U

∗ for i = 1, 2, 3, 5, 6,

U∗ →∗
i E

∗ for i = 1, 2, 3, 4, 5, 6, 7,

E∗ →∗
i O

∗ for i = 6,

E∗ →∗
i U

∗ for i = 2, 3, 6,

E∗ →∗
i E

∗ for i = 1, 2, 3, 4, 5, 6, 7
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are IFTs and

O∗ →∗
i O

∗ for i = 1, 2, 3, 4, 5, 6,

O∗ →∗
i U

∗ for i = 1, 2, 3, 4, 5, 6,

O∗ →∗
i E

∗ for i = 1, 2, 3, 4, 5, 6, 7,

U∗ →∗
i O

∗ for i = 1, 2, 5, 6,

U∗ →∗
i U

∗ for i = 1, 2, 3, 5, 6,

U∗ →∗
i E

∗ for i = 1, 2, 3, 4, 5, 6,

E∗ →∗
i U

∗ for i = 2, 3,

E∗ →∗
i E

∗ for i = 1, 2, 3, 4, 5, 6

are tautologies.
Third, let us mention by ⊃i the expression x →i y. Then we formulate and prove the next

theorem.

Theorem 1. The following relations hold:

⊃2 ≥


⊃1 ≥ ⊃5

⊃3

⊃6

 ≥ ⊃4 ≥ ⊃7 .

Proof. For the check that ⊃2≥⊃1, we put:

X ≡ sg(a+ d− 1) + sg(a+ d− 1)
1− d
a
− sg(a− c) + sg(a− c) c

a

and
Y ≡ sg(a− c)a− c

a
− sg(a+ d− 1)

a+ d− 1

a
.

If a > 1− d(≥ c), then

X = 0 + 1.
1− d
a
− 0 + 1.

c

a
=

1− d
a
− c

a
=

1− c− d
a

≥ 0

and
Y = 1.

a− c
a
− 1.

a+ d− 1

a
=

1− c− d
a

≥ 0.

If 1− d ≥ a, then

X = 1 + 0.
1− d
a
− sg(a− c) + sg(a− c) c

a
= 1− sg(a− c) + sg(a− c) c

a

≥ sg(a− c) c
a
≥ 0.

and
Y = sg(a− c)a− c

a
− 0.

a+ d− 1

a
≥ 0.

All other relations are proved in the same manner. �
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Fourth, following [5, 7, 10], we define the classical intuitionistic fuzzy negation by:

¬∗1x = x→∗
1 O

∗ = 〈sg(a), sg(a)〉,
¬∗2x = x→∗

2 O
∗ = 〈sg(a), sg(a)〉,

¬∗3x = x→∗
3 O

∗ = 〈sg(1− b), sg(1− b)〉,
¬∗4x = x→∗

4 O
∗ = 〈sg(1− b), sg(1− b)〉,

¬∗5x = x→∗
5 O

∗ =
〈
sg(a), sg(a)

a

1− b
〉 = 〈sg(a), a

1− b

〉
,

¬∗6x = x→∗
6 O

∗ =
〈
sg(a) + sg(a)

1

2− b
, sg(a)

a

2− b

〉
=
〈
sg(a) +

sg(a)

2− b
,

a

2− b

〉
,

¬∗7x = x→∗
7 O

∗ =
〈
0,
a+ 1

2− b

〉
,

because obviously, for each a ∈ [0, 1] : a. sg(a) = a.
We see that

¬∗1x = ¬∗2x = ¬2x,

¬∗3x = ¬∗4x = ¬5x,

where ¬2 and ¬5 are negations, described in details in [5], while the negations ¬∗5,¬∗6, and ¬∗7 are
new ones and in near future will obtain their specific numerations.

For the new negations we check:

¬∗5¬∗5x = ¬∗5
〈
sg(a),

a

1− b

〉
=
〈
sg(a),

sg(a)(1− b)
1− a− b

〉
,

because sg(sg(a)) = sg(a). Therefore,

¬∗5¬∗5x 6= x,

i.e., this negation is not a classical negation. For it we check also:

¬∗5¬∗5¬∗5x = ¬∗5
〈
sg(a),

sg(a)(1− b)
1− a− b

〉
=
〈
sg(a),

sg(a)(1− a− b)
1− a− b− sg(a)(1− b)

〉
,

because sg(sg(a)) = sg(a).

Now, let

X ≡ sg(a)(1− a− b)
1− a− b− sg(a)(1− b)

− a

1− b
.

If a = 0, then by the above condition (∗):

X = 0.
1− b
0
− 0

1− b
= 0.

If a > 0, then

X =
1− a− b
1− a− b

− a

1− b
= 1− a

1− b
= −1− a− b

1− b
≥ 0.

Therefore,
¬5x ≥ ¬∗5¬∗5¬∗5x,

i.e., not always the well-known logical equality ¬x = ¬¬¬x (see, e.g., [8, 10]) is true.
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Also, if

x→∗
5 ¬∗5¬∗5x = 〈a, b〉 →∗

5

〈
sg(a),

sg(a)(1− b)
1− a− b

〉
=

〈
sg(a− sg(a)) + sg(a− sg(a))

sg(a)

1− b
, sg(a− sg(a))

a− sg(a)

1− b

〉
= 〈1, 0〉,

because if a = 0, then sg(a− sg(a)) = sg(0) = 1 and sg(a− sg(a)) = sg(0) = 0; and if a > 0,
then sg(a− sg(a)) = sg(a− 1) = 1 and sg(a− sg(a)) = sg(a− 1) = 0.

Therefore, the intuitionistic condition x → ¬¬x is satisfied as an IFT, as well as, as a
tautology.

On the other hand,

¬∗5¬∗5x→∗
5 x =

〈
sg(a),

sg(a)(1− b)
1− a− b

〉
→∗

5 〈a, b〉

=

〈
sg(sg(a)− a) + sg(sg(a)− a) a

1− sg(a)(1−b)
1−a−b

, sg(sg(a)− a) sg(a)− a
1− sg(a)(1−b)

1−a−b

〉

and it is not a tautology, because, e.g., for 0 < a < 1

¬∗5¬∗
5x→∗

5 x =

〈
sg(1− a) + sg(1− a) a

1− 0
1−a−b

, sg(1− a) 1− a
1− 0

1−a−b

〉
= 〈sg(1− a) + sg(1− a).a, sg(1− a).(1− a)〉
= 〈a, 1− a〉

that is not an IFT when a < 0.5 and therefore, it is not a tautology. By the same manner we can
check the relations for→6 and→7 and can formulate the following theorem.

Theorem 2. For each IFP x,

a) x→ ¬¬x is a tautology for→∗
5 and ¬∗5, but not for→∗

6 and ¬∗
6, and for→∗

7 and ¬∗7;

b) x→ ¬¬x is an IFT for→∗
5 and ¬∗5, and for→∗

6 and ¬∗6, but not for→∗
7 and ¬∗7;

c) ¬¬x→ x is not a tautology for the new implications and negations;

d) ¬¬x→ x is an IFT for→∗
6 and ¬∗6, but not for→∗

5 and ¬∗5, and for→∗
7 and ¬∗7;

e) ¬¬¬x = ¬x is not a tautology for the new implications and negations;

f) ¬¬¬x = ¬x is not an IFT for the new implications and negations.

Fifth, we mention that nine axioms for implications are introduced in [9]. They are the
following:

• Axiom A1 (∀x, y)(x ≤ y → (∀z)(I(x, z) ≥ I(y, z))).

• Axiom A2 (∀x, y)(x ≤ y → (∀z)(I(z, x) ≤ I(z, y))).
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• Axiom A3 (∀y)(I(0∗, y) = E∗).

• Axiom A4 (∀y)(I(E∗, y) = y).

• Axiom A5 (∀x)(I(x, x) = E∗).

• Axiom A6 (∀x, y, z)(I(x, I(y, z)) = I(y, I(x, z))).

• Axiom A7 (∀x, y)(I(x, y) = E∗ iff x ≤ y).

• Axiom A8 (∀x, y)(I(x, y) = I(N(y), N(x))), where N is an operation for a negation.

• Axiom A9 I is a continuous function.

Following [5], we will mention that if some axiom is valid as an IFT, the number of the axiom
is marked with an asterisk (∗). These axioms are:

• Axiom A3* (∀y)(I(0, y) is an IFT).

• Axiom A4* (∀y)(I(1, y) ≤ y).

• Axiom A5* (∀x)(I(x, x) is an IFT).

• Axiom A7* (∀x, y)(I(x, y) is an IFT iff x ≤ y).

• Axiom A8* (∀x, y)(I(x, y) = N(N(I(N(y), N(x))))).

The following two theorems are proved by the manner, used in the proof of Theorem 1.

Theorem 3. The following implications satisfy the following axioms as tautologies:

A1: →∗
1,→∗

2,→∗
3,→∗

4;

A2: →∗
1,→∗

2,→∗
3,→∗

4,→∗
5,→∗

6;

A3: →∗
1,→∗

2,→∗
3,→∗

4,→∗
5,→∗

6;

A3*: →∗
1,→∗

2,→∗
3,→∗

4,→∗
5,→∗

6;

A4: no one;

A4*: →∗
1,→∗

4,→∗
5,→∗

7;

A5: →∗
1,→∗

2,→∗
3,→∗

5,→∗
6;

A5*: →∗
1,→∗

2,→∗
3,→∗

5,→∗
6;

A6: →∗
1,→∗

2,→∗
3,→∗

4;

A7: no one;

A7*: no one;
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A8: no one;

A8*: no one;

A9: if condition (∗) is true, all implications.

Theorem 4. The implications satisfy the following axioms as IFTs:

A1: →∗
1,→∗

2,→∗
3,→∗

4,→∗
6;

A2: →∗
1,→∗

2,→∗
3,→∗

4,→∗
5,→∗

6;

A3: →∗
1,→∗

2,→∗
3,→∗

4,→∗
5,→∗

6;

A3*: →∗
1,→∗

2,→∗
3,→∗

4,→∗
5,→∗

6;

A4: no one;

A4*: →∗
1,→∗

4,→∗
5,→∗

7;

A5: →∗
1,→∗

2,→∗
3,→∗

5,→∗
6;

A5*: →∗
1,→∗

2,→∗
3,→∗

5,→∗
6;

A6: →∗
1,→∗

2,→∗
3,→∗

4;

A7: no one;

A7*: no one;

A8: no one;

A8*: no one;

A9: if condition (*) is true, all implications.

Following the notation from [5], in future we will denote implications→∗
1, . . . ,→∗

7 as→199

, . . . ,→205 and we will denote negations ¬∗5,¬∗6 and ¬∗7 as ¬53,¬54,¬55.

4 Conclusion

Following [6], we mention that as it is shown in [1, 2, 3], for each intuitionistic fuzzy implication,
one or three intuitionistic fuzzy disjunctions and conjunctions are introduced. For example, for
disjunction, the following formulas are used:

p ∨1 q = ¬p→ q,

p ∨2 q = ¬p→ ¬¬q,

where operation intuitionistic fuzzy negation (¬) is generated by the respective intuitionistic fuzzy
implication (→); and

p ∨3 q = ¬p→ q,

where the negation ¬ is the classical one.
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In future, the respective intuitionistic fuzzy disjunctions and conjunctions, associated with the
seven new implications will be introduced and their properties will be studied. Having in mind
the form of the negations, generated by the new implications, we must immediately mention that
each of these implications will generate three different disjunctions and conjunctions.
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