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1 Introduction

In a series of papers collected in [2], a new type of intuitionistic fuzzy modal
operators is introduced and some of their properties are studied. In the present
paper, a new operator from modal type is introduced and some of its basic
properties are studied. In the Conclusion, Open Problems are formulated.
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2 Preliminary results

Let a set E be fixed. The Intuitionistic Fuzzy Set (IFS) A in E is defined by
(see, e.g., [1]):

A = {〈x, µA(x), νA(x)〉|x ∈ E},
where functions µA : E → [0, 1] and νA : E → [0, 1] define the degree
of membership and the degree of non-membership of the element x ∈ E,
respectively, and for every x ∈ E:

0 ≤ µA(x) + νA(x) ≤ 1.

Different relations and operations are introduced over the IFSs. Some of
them (see, e.g. [1, 2]) are the following

A ⊆ B iff (∀x ∈ E)(µA(x) ≤ µB(x)&νA(x) ≥ νB(x)),

A = B iff (∀x ∈ E)(µA(x) = µB(x)&νA(x) = νB(x)),

¬A = {〈x, νA(x), µA(x)〉|x ∈ E},

A@B = {
〈
x, µA(x)+µB(x)

2 , νA(x)+νB(x)
2

〉
|x ∈ E},

A = {〈x, µA(x), 1− µA(x)〉|x ∈ E},

♦A = {〈x, 1− νA(x), νA(x)〉|x ∈ E}.

In [2] some types of modal operators are described. The most general form
of the second type of modal operators was introduced in [3]. It has the form

⊗α,β,γ,δA = {〈x, α.µA(x) + β.νA(x), γ.µA(x) + δ.νA(x)〉|x ∈ E},

where α, β, γ, δ ∈ [0, 1] and α+ β ≤ 1, γ + δ ≤ 1.

3 Main results

Here, we introduce the following new operator from modal type, that is an
extension of the operator ⊗α,β,γ,δ. It has the form

⊕α,β,γ,δ,ε,ζA = {〈x, α.µA(x)+β.νA(x)+γ, δ.µA(x)+ε.νA(x)+ζ〉|x ∈ E},

where α, β, γ, δ, ε, ζ ∈ [0, 1] and

max(α+ δ, β + ε) + γ + ζ ≤ 1. (1)
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From (1) we see immediately that

max(α, β) + γ ≤ max(α+ δ, β + ε) + γ + ζ ≤ 1 (2)

and
max(δ, ε) + ζ ≤ max(α+ δ, β + ε) + γ + ζ ≤ 1. (3)

It is easy to see that
⊕1,0,0,0,1,0A = A,

⊕0,1,0,1,0,0A = ¬A

and
⊗α,β,γ,δA = ⊕α,γ,0,β,δ,0A.

Therefore, this operator gives the possibility to express the operation iden-
tity, the operation “classical negation” and the operator ⊗α,β,γ,δ. In this way,
by varying the values of the variables α, β, γ, δ, ε, ζ in the [0; 1] range, we
can obtain the whole continuity of sets existing between a given set A and its
classical negation ¬A.

Let us study the basic properties of the new operator.
First, we check that the new set is an IFS. Really, from (2) and (3) we

obtain:

0 ≤ α.µA(x) + β.νA(x) + γ ≤ max(α, β).(µA(x) + νA(x)) + γ

≤ max(α, β) + γ ≤ 1,

0 ≤ δ.µA(x) + ε.νA(x) + ζ ≤ max(δ, ε).(µA(x) + νA(x)) + ζ

≤ max(δ, ε) + ζ ≤ 1

and from (1):

0 ≤ α.µA(x) + β.νA(x) + γ + δ.µA(x) + ε.νA(x) + ζ

= (α+ δ).µA(x) + (β + ε).νA(x) + γ + ζ

≤ max(α+ δ, β + ε).(µA(x) + νA(x)) + γ + ζ ≤ 1.

Theorem 1. For every IFS A and for every six real numbers α, β, γ, δ, ε,
ζ ∈ [0, 1] such that (1) is valid,

¬ ⊕α,β,γ,δ,ε,ζ ¬A = ⊕δ,γ,β,αA.
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Proof. We obtain sequentially that

¬ ⊕α,β,γ,δ,ε,ζ ¬A

= ¬ ⊗α,β,γ,δ,ε,ζ {〈x, νA(x), µA(x)〉|x ∈ E}

= ¬{〈x, α.νA(x) + β.µA(x) + γ, δ.νA(x) + ε.µA(x) + ζ〉|x ∈ E}

= {〈x, δ.νA(x) + ε.µA(x) + ζ, α.νA(x) + β.µA(x) + γ〉|x ∈ E}

= ⊕δ,ε,ζ,α,β,γA.

This completes the proof.
Theorem 2. For every two IFSs A and B and for every six real numbers
α, β, γ, δ, ε, ζ ∈ [0, 1] such that (1) is valid, it holds that

⊕α,β,γ,δ,ε,ζ(A@B) = ⊕α,β,γ,δ,ε,ζA@⊕α,β,γ,δ,ε,ζ B.

Proof. We obtain sequentially

⊕α,β,γ,δ,ε,ζ(A@B)

= ⊕α,β,γ,δ,ε,ζ
(
{〈x, µA(x) + µB(x)

2
,
νA(x) + νB(x)

2
〉|x ∈ E}

)
= {〈x, α

(
µA(x) + µB(x)

2

)
+ β

(
νA(x) + νB(x)

2

)
+ γ,

δ

(
µA(x) + µB(x)

2

)
+ ε

(
νA(x) + νB(x)

2

)
+ ζ〉|x ∈ E}

= {〈x, αµA(x) + αµB(x)

2
+
βνA(x) + βνB(x)

2
+ γ,

δµA(x) + δµB(x)

2
+
ενA(x) + ενB(x)

2
+ ζ〉|x ∈ E}

= {〈x, αµA(x) + βνA(x) + γ

2
+
αµB(x) + βνB(x) + γ

2
,

δµA(x) + ενA(x) + ζ

2
+
δµB(x) + ενB(x) + ζ

2
〉|x ∈ E}

= {〈x, αµA(x) + βνA(x) + γ, δµA(x) + ενA(x) + ζ〉|x ∈ E}

@{〈x, αµB(x) + βνB(x) + γ, δµB(x) + ενB(x) + ζ〉|x ∈ E}
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= ⊕α,β,γ,δ,ε,ζA@⊕α,β,γ,δ,ε,ζ B.

Theorem 3. For every IFS A and for every six real numbers α, β, γ, δ, ε, ζ ∈
[0, 1] such that (1) is valid, it holds that

(a) ⊕α,β,γ,δ,ε,ζ A ⊆ ⊕α,β,γ,δ,ε,ζ A,
(b)⊕α,β,γ,δ,ε,ζ ♦A ⊆ ♦⊕α,β,γ,δ,ε,ζ A.

Proof. First, we obtain
⊕α,β,γ,δ,ε,ζ A

= {〈x, α.µA(x) + β.νA(x) + γ, δ.µA(x) + ε.νA(x) + ζ〉|x ∈ E}

= {〈x, α.µA(x) + β.νA(x) + γ, 1− (α.µA(x) + β.νA(x) + γ)〉|x ∈ E}

and
⊕α,β,γ,δ,ε,ζ A

= {〈x, αµA(x) + β(1− µA(x)) + γ, δµA(x) + ε(1− µA(x)) + ζ〉|x ∈ E}.

Immediately, we see that

αµA(x) + β(1− µA(x)) + γ ≥ α.µA(x) + β.νA(x) + γ

and

1− (α.µA(x) + β.νA(x) + γ)− (δµA(x) + ε(1− µA(x)) + ζ)

= 1− (α+ δ − ε).µA(x)− β.νA(x)− γ − ζ

≥ 1− (α+ δ − ε).µA(x)− β.(1− µA(x))− γ − ζ

= 1− (α+ δ − β − ε).µA(x)− β − γ − ζ

≥ 1− (α+ δ − β − ε)− β − γ − ζ

≥ 1− α− δ + ε− γ − ζ

from (1)
≥ max(α+ δ, β + ε)− α− δ + ε ≥ ε ≥ 0.

Theorem 4. For every IFSA, for every six real numbers α, β, γ, δ, ε, ζ ∈ [0, 1]
such that (1) is valid, and for every six real numbers a, b, c, d, e, f ∈ [0, 1] such
that max(a+ d, b+ e) + c+ f ≤ 1 is valid, it holds that

⊕a,b,c,d,e,f (⊕α,β,γ,δ,ε,ζ(A)) = ⊕aα+bδ,aβ+bε,aγ+bζ+c,dα+eδ,dβ+eε,dγ+eζ+f (A).
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Proof. Let A be an IFS and let the 12 real numbers are given. Then

⊕a,b,c,d,e,f (⊕α,β,γ,δ,ε,ζ(A))

= ⊕a,b,c,d,e,f{〈x, α.µA(x) + β.νA(x) + γ, δ.µA(x) + ε.νA(x) + ζ〉|x ∈ E}
= {〈x, a(α.µA(x) + β.νA(x) + γ) + b(δ.µA(x) + ε.νA(x) + ζ) + c,

d(α.µA(x) + β.νA(x) + γ) + e(δ.µA(x) + ε.νA(x) + ζ) + f〉|x ∈ E}
= {〈x, (aα+ bδ).µA(x) + (aβ + bε).νA(x) + (aγ + bζ + c),

(dα+ eδ).µA(x) + (dβ + eε).νA(x) + (dγ + eζ + f)〉|x ∈ E}

= ⊕aα+bδ,aβ+bε,aγ+bζ+c,dα+eδ,dβ+eε,dγ+eζ+f (A).
Finally, we illustrate the relations between different modal type of opera-

tors with Fig. 1.
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4 Conclusion

In the present paper, a new modal operator is introduced. It is extension of
operator⊗α,β,γ,δ and it is different from the rest modal operators, defined over
IFSs. It arises some open problems, as the following ones.
Open Problem 1: Can operator ⊗α,β,γ,δ,ε,ζ be represented by the extended
modal operators?
Open Problem 2: Can operator⊗α,β,γ,δ,ε,ζ be used for representation of some
type of modal operators?
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