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regular open or intuitionistic fuzzy regular closed.  
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1 Introduction 

The concept of fuzzy set was introduced by Zadeh in his classic paper [14]. The concept of fuzzy 
topological spaces was introduced and developed by C. L. Chang [4]. In [7, 8] some weaker forms 
of fuzzy compactness are considered for the first time. Since Atanassov [1, 2, 3] introduced the 
notion of intuitionistic fuzzy sets, Çoker [5] defined the intuitionistic fuzzy topological spaces. 
Çoker and Eş [6] introduced and investigated fuzzy almost compactness, fuzzy near compactness 
and fuzzy light compactness in intuitionistic fuzzy topological spaces. The investigation of 
covering properties of topological spaces has a long history going back to papers by Menger and 
Rothberger [10, 12]. However, more recently a new theory called Selection Principles was 
introduced by Scheepers [13]. The theory of Selection Principles has extraordinary connections 
with numerous subareas of mathematics, for example, set theory and general topology, uniform 
structures and ditopological texture spaces [9]. In 1999, Kocinac defined and characterized the 
almost Menger property [9]. Following this concept, Aqsa, Moiz ud Din Khan defined and 
investigated nearly Menger and nearly star-Menger spaces [11]. 
 In this paper, we introduce and then investigate intuitionistic fuzzy Menger spaces, 
Intuitionistic fuzzy near Menger spaces and Intuitionistic fuzzy almost Menger spaces in Çoker’s 
space.  
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2 Preliminaries 

Definition 2.1. [1] Let X be a non-empty fixed set and I the closed interval [0, 1]. An intuitionistic 
fuzzy set (IFS) A is an object of following form 

( ) ( ){ , ,  | }
A A

A x x x x Xµ ϑ= ∈ .  

where the mappings :
A

X Iµ →  and :
A

X Iϑ →  denote the degree of membership ( )A xµ  and 

the degree of non-membership ( )A xϑ  for each element x X∈ of the set A, respectively, and 

( ) ( )0  1A Ax xµ ϑ≤ + ≤  for each .x X∈  

Definition 2.2. [1] Let A and B be IFS’s of the form ( ) ( ){ , ,  | }
A A

A x x x x Xµ ϑ= ∈  and 

( ) ( ){ , ,  | }
B B

B x x x x Xµ ϑ= ∈ . Then  

(i)  A B⊆ f ( ) ( )A Bx xµ µ≤  and ( ) ( )A Bx xϑ ϑ≥  

(ii) ( ) ( ) ( ){ , , | }
A A

A x x x x x Xϑ µ= ∈  

(iii) ( ) ( ) ( )( ) ( )( ){ , ,  | } 
A B A A

A B x x x x x x x x Xµ µ ϑ ϑ∩ = ∧ ∨ ∈  

(iv) ( ) ( ) ( )( ) ( )( ){ , ,  | } 
A B A A

A B x x x x x x x x Xµ µ ϑ ϑ∪ = ∨ ∧ ∈  

Definition 2.3. [1] { }~ 0 , 0,1 x x X= ∈  and { }~1 ,1 , 0x x X= ∈ .  

Definition 2.4. [5] An intuitionistic fuzzy topology (IFT for short) in Çoker’s sense on a non-
empty set X is a family τ of intuitionistic fuzzy sets in X satisfying the following axioms: 

(T1)  ~ ~ 0 ,1  τ∈ , 

(T2) 1 2G G τ∩ ∈  for any 1 2,G G τ∈ , 

(T3) i

i I

G τ
∈

∈∪  for any arbitrary family { }:iG i I τ∈ ⊆ .  

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFT for short) and 
each IFS in τ is known as an intuitionistic fuzzy open set (IFOS for short) in X.  

Definition 2.5. [5] The complement A  of an IFOS A in an IFTS (X, τ) is called an intuitionistic 
fuzzy closed set (IFCS for short) in X.  

Definition 2.6. [5] Let (X, τ) be an IFTS and ( ) ( ){ , ,  | }
A A

A x x x x Xµ ϑ= ∈  be an IFS in X. 

Then the fuzzy interior and fuzzy closure of A are defined by  

cl(A) = ∩ {K | K is an IFCS in X and A ⊆ K} 

and 

int(A) = ∪ {G | G is an IFOS in X and G ⊆ A}. 

Definition 2.7. [5] Let X and Y be two nonempty sets and f : X → Y be a function. If

( ) ( ){ , ,  | }
B B

B y y y y Yµ ϑ= ∈  is an IFS in Y, then the preimage of B under f, denoted by ( )1  f B
−  

is the IFS in X defined by:  
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( ) ( )( ) ( ) ( ){ }1 1 1, , |
B B

f B x f x f x x Xµ ϑ− − −= ∈ .  

Similarly, if ( ) ( ){ , ,  | }
A A

A x x x x Xµ ϑ= ∈  is an IFS in X, then the image of A under f, denoted 

by f(A), is the IFS in Y defined by  

( ) ( )( ) ( ) ( ){ }, , | .
A A

f A y f y f y y Yµ ϑ= ∈  

Proposition 2.8. [5] Let (X, τ) be an IFTS and A, B be IFS’s in X. Then, the following properties 
hold: 

( ) ( )( ) ( ) ( )( ) cl int ,  int clA A A A= =  

( ) ( )int cl .A A A⊆ ⊆  

Definition 2.9. [5] Let X be an IFTS. A family { }, , :
i iG Gx i Iµ ϑ ∈  of IFOS’s in X satisfies the 

condition { } ~, , : 1
i iG Gx i Iµ ϑ ∈ =∪  is called a fuzzy open cover of X.  

A finite subfamily of a fuzzy open cover { }, , :
i iG Gx i Iµ ϑ ∈  which is also a fuzzy open 

cover of X is called a finite subcover of { }, , :
i iG Gx i Iµ ϑ ∈ . An IFTS X is called fuzzy compact 

iff every fuzzy open cover has a finite subcover.  

Definition 2.10. [6] Let X be an IFTS. A family { }, , :
i iG Gx i Iµ ϑ ∈ of IFOS’s in X has the finite 

intersection property (FIP for short) if every finite subfamily { }, , : 1,2, ,
i iG Gx i nµ ϑ = … satisfies 

the condition ~
1

,  ,  0
i iG G

n

i

x µ ϑ
=

≠∩ .  

Definition 2.11. [6] An intuitionistic fuzzy set A is called an intuitionistic fuzzy regular open set 
iff A = int(cl(A)) an intuitionistic fuzzy set B is called an intuitionistic fuzzy regular closed set iff 
B = cl(int(B)).  

Definition 2.12. [6] Let ( )1,X τ , ( )2,Y τ be two IFTS’s and let f : X → Y be a function. Then f is 

said to be intuitionistic fuzzy strongly continuous iff for each IFS A in X, ( )( ) ( )clf A f A⊆ .  

Definition 2.13. [6] Let ( )1,X τ and ( )2,Y τ be two IFTS’s and let f : X → Y be a function. Then f 

is said to be intuitionistic fuzzy almost continuous iff the preimage of each intuitionistic fuzzy 
regular open set of Y is an intuitionistic fuzzy open set in X.  

Definition 2.14. [6] Let ( )1,X τ and ( )2,Y τ  be two IFTS’s and let f : X → Y be a function.  

Then f is said to be intuitionistic fuzzy weakly continuous iff for each IFOS B of Y, 

( ) ( )( )( )1 1int clf B f B
− −⊆ .  
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3 Intuitionistic fuzzy Mengerness 

Here we generalize the concept of Menger topological spaces, first proposed by Menger [10], to 
the case of intuitionistic fuzzy topological spaces.  

Definition 3.1 (i) An IFTS (X, τ) is fuzzy Menger, if for every sequence { | }
n

G n N∈  where 

Gn ={ }, , |
n nG Gx n Nµ ϑ ∈  are intuitionistic fuzzy open covers of X, there exists a sequence 

{ | },nH n N∈  where Hn = { }, , |
n nH Hx n Nµ ϑ ∈  such that for every n ∈ N, Hn is a finite 

intuitionistic fuzzy subset of Gn and ~{ , , | } 1 .
n nH H

x n Nµ ϑ∪ ∈ =  

(ii) An IFTS (X, τ) is fuzzy almost Menger (nearly Menger), if for every sequence { | }
n

G n N∈  

where Gn = { }, , |
n nG Gx n Nµ ϑ ∈  are intuitionistic fuzzy open covers of X, there exists a sequence 

{ | },nH n N∈  where Hn = { }, , |
n nH Hx n Nµ ϑ ∈  such that for every n ∈ N, Hn is a finite 

intuitionistic fuzzy subset of Gn and *
~1 ,n

n N

H
∈

=∪  where *
nH = {cl(H) | H ⊆ Hn} 

( *
nH  = {int(cl(H)) | H ⊆ Hn}).  

It is clear that in IFTS we have the following implications: 

   Intuitionistic fuzzy Intuitionistic fuzzy Intuitionistic fuzzy

Mengerness near Mengerness almost Mengerness
→ →  

However, the reverse implications do not hold.  

Example 3.2. Let X = {1, 2} and define the intuitionistic fuzzy subsets { | }
n

G n N∈  as follows: 

1 1
(1) 1 , (1)  ,

1
1 1

(2) 1 , (2) .
1 2

n n

n n

G G

G G

n n

n n

µ ν

µ ν

= − =
+

= − =
+ +

 

In this case, the sequence { }~ ~ { | }  0 ,1 nG n Nτ = ∈ ∪  is an IFT on X [6]. Since cl(Gn) = ~1   and 

int(cl(Gn)) = ~1 , (X, τ) is intuitionistic fuzzy nearly Menger. On the other hand, { | }
n

G n N∈  has 

no finite intuitionistic fuzzy subset of Gn. Hence (X, τ) is not intuitionistic fuzzy Menger.  

Theorem 3.3. An IFTS (X, τ) is fuzzy almost Menger iff every sequence{ | }
n

G n N∈ , where 

{ }, , |
n nn G GG x n Nµ ϑ= ∈  of intuitionistic fuzzy open subset of X having the finite intersection 

property we have ~cl( )  0n

n N

G
∈

≠∩ . 

Proof. Suppose X is fuzzy almost Menger and let Gn = { }, , |
n nG Gx n Nµ ϑ ∈  be any sequence of 

intuitionistic fuzzy open sets in X such that { } ~cl , , | 0 .
n nG Gx n Nµ ϑ ∈ =∩  Then, we have

{ } ~int , , | 1 .
n nG Gx n Nµ ϑ ∈ =∩  Since X is fuzzy almost Menger, for every n ∈ N, there exists a 
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sequence { | }nH n N∈ , where Hn = { }, , |
n nH Hx n Nµ ϑ ∈ , such that for every n ∈ N, Hn is a finite 

intuitionistic fuzzy subset of Gn and *
~1 ,n

n N

H
∈

=∪ where *
nH  = {cl(H) | H ⊆ Hn}. But from 

Hn ⊆ int(Gc
n) and Gn ⊆ int(cl(Gn)), we see that ~0 ,n

n N

G
∈

=∩ which is a contradiction with the 

finite intersection property. 

Conversely, let {Gn | n ∈ N} be an intuitionistic fuzzy open cover of X. If *
~1 ,n

n N

H
∈

≠∪  

where *
nH  = {cl(H) | H ⊆ Hn} and Hn is a finite intuitionistic fuzzy subset of Gn, then *( )c

nH   

is an intuitionistic fuzzy open sequence with the finite intersection property. Hence,  

from the hypothesis it follows that *
~(( ) ) 0c

n

n N

cl H
∈

≠∩  and then *
~[cl(( ) )] 1 .c c

n

n N

H
∈

≠∪  Since 

*
~[cl(( ) )] 1 ,c c

n n

n N n N

G H
∈ ∈

⊆ ≠∪ ∪  then ~1 ,n

n N

G
∈

≠∪  which is a contradiction. 

Theorem 3.4. In an IFTS (X, τ) the following conditions are equivalent: 

(i) (X, τ) is fuzzy almost Menger. 

(ii) For every family {Kn | n ∈ N}, where { }, , |
n nKn KK x n Nµ ϑ= ∈  of intuitionistic fuzzy 

regular closed sets such that ~0 ,n

n N

K
∈

=∩  there exists a sequence { | }nH n N∈ , where 

Hn = { }, , |
n nH Hx n Nµ ϑ ∈ , such that for every n ∈ N, Hn is a finite subset of Kn and 

*
~0 ,n

n N

H
∈

=∩  where  * {cl( ) | }.n nH H H H= ⊆  

(iii) ~cl( ) 0n

n N

G
∈

≠∩  holds for each sequence of intuitionistic fuzzy regular open sets  

{Gn | n ∈ N} with the finite intersection property, where { }, , |
n nGn GG x n Nµ ϑ= ∈ . 

(iv) For each sequence {Gn | n ∈ N} of intuitionistic fuzzy regular open covers of X, there 

exists a sequence {Hn | n ∈ N}, where Hn = { }, , |
n nH Hx n Nµ ϑ ∈  such that for n ∈ N, 

Hn is a finite subset of Gn and *
~1 ,n

n N

H
∈

=∪  where * {cl( ) | }.n nH H H H= ⊆  

Proof. The proof of this theorem follows a similar pattern to Theorem 3.3. � 

Theorem 3.5. Let ( )1,X τ , ( )2,Y τ be two IFTS’s and let f : X → Y be an intuitionistic fuzzy 

almost continuous surjection. If ( )1,X τ  is fuzzy almost Menger, then ( )2,Y τ  is fuzzy almost 

Menger. 

Proof. Let { | }nG n N∈  be a sequence of covers of Y by fuzzy open sets, then {int(cl(Gn )) | n ∈ N} 

is also an intuitionistic fuzzy open cover of Y. Since f is fuzzy almost continuous,  

{f –1(int(cl(Gn))) | n ∈ N} is an intuitionistic fuzzy open cover of X. Thus, there is a sequence 

{ | }nH n N∈ , where Hn = { }, , |
n nH Hx n Nµ ϑ ∈ , such that for every n ∈ N, Hn is a finite subset 

of  f –1(int(cl(Gn )))  and *
~1 ,n

n N

H
∈

=∪  where * {cl( ) | }.n nH H H H= ⊆  
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For every n ∈ N and H ⊆ Hn we can choose a member GH ⊆ Gn such that H = f –1(GH). From 
the surjectivity of  f  we have 

1 1
~cl( (int(cl( )))) (cl( (int(cl( ))))) 1 .H H

n N n N

f f G f f G
− −

∈ ∈

 
= = 

 
∪ ∪   

But from int(cl(GH)) ⊆ cl(GH) and intuitionistic fuzzy almost continuity of  f, f –1(cl(GH)) 

must be an intuitionistic fuzzy closed set containing f –1(int(cl(GH))) and then cl(f –1(int(cl(GH)))). 

Therefore, f (cl(f –1(int(cl(GH))))) ⊆ cl(GH). 

Then, ~{cl( ) | } 1 .H n

n N

G H H
∈

⊆ =∪  Hence, Y is intuitionistic fuzzy almost Menger. � 

Theorem 3.6. Let ( )1,X τ , ( )2,Y τ  be two IFTS’s and let f : X → Y  be an intuitionistic fuzzy 

strongly continuous surjection. If ( )1,X τ  is fuzzy almost Menger, then so is ( )2,Y τ . 

Proof. It is similar to the proof of Theorem 3.5.  � 

Theorem 3.7. Let ( )1,X τ , ( )2,Y τ  be two IFTS’s and let f : X → Y be an intuitionistic fuzzy 

weakly fuzzy continuous surjection. If ( )1,X τ  is fuzzy Menger, then ( )2,Y τ  is fuzzy almost 

Menger.  
Proof. The proof follows from the definition of intuitionistic fuzzy weakly continuous  
function.  � 

Theorem 3. 8. An intuitionistic fuzzy topological space ( ),X τ  is intuitionistic fuzzy nearly 

Menger iff for every sequence { | }nG n N∈  , where Gn = { }, , |
n nG Gx n Nµ ϑ ∈  of  covers of X by 

intuitionistic fuzzy regular open sets, there is a sequence { | }nH n N∈ , where Hn = 

{ }, , |
n nH Hx n Nµ ϑ ∈ , such that for every n ∈ N, Hn is a finite subset of Gn  and ~1 .n

n N

H
∈

=∪  

Proof. Similar to the proof of Theorem 3.3.  � 
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