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Abstract: Intuitionistic Fuzzy Sets (IFSs), proposed in 1983, are extensions of fuzzy sets. Some
years after their introduction, interval-valued IFSs (IVIFSs) were introduced. During the last 30
years, their properties were studied and these sets were used as tool for evaluation of different
objects and processes from the area of the Artificial Intelligence. Short review of these legs of
research is offered, with some concrete ideas of possible new directions of study. On this basis,
a non-formal discussion is raised on the benefits of applying various elements of IVIFSs as tools
for evaluation of Data Mining processes.
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1 Introduction

This paper is a continuation of the author’s paper [8]. Here, we discuss the origin, current state
of research and applications in the area of Data Mining (DM) of one extension of Intuitionistic
Fuzzy Sets (IFSs) and Logics (IFLs), called Interval-Valued IFSs (IVIFSs) and Logics (IVIFLs).

The first research, related to IVIFSs started in 1988 – 1989 [3,13]. Their basic definitions and
the definitions of the operations, relations and operators, defined over them are described in [6]
and in a series of papers, e.g., [10, 11]. Here, we use some these definitions.
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The components in the IVIFS- and IVIFL-definitions give more and larger evaluating pos-
sibilities and determine the place of the IVIFSs and IVIFLs among the separate types of fuzzy
sets. In the last 25 years the IVIFSs have been used for evaluating of processes in a wide range
of areas, e.g. of Systems Theory (ST), Artificial Intelligence (AI) and Intelligent Systems (IS),
medicine, chemical industry, ecology, etc.

Here we describe some of the IVIFS-applications in the AI and IS, and their benefits and
discuss the possibilities for application of the IVIFSs as tools for evaluating of DM-processes.

2 IVIFSs and Data Mining – possibilities for the future

Following [8], we ask: “What is Data Mining”? The answer of this question is so unclear, as well
as the answer of the question for the areas of the AI. Again, there are different answers in respect
of the opinions of the specialists, giving answers. For example:

“The aim of DM is to make sense of large amounts of mostly unsupervised data, in some
domain” [25];

“The aim of DM is to extract implicit, previously unknown and potentially useful (or ac-
tionable) patterns from data. DM consists of many up-to-date techniques such as classification
(decision trees, naive Bayes classifier, k-nearest neighbor, NNs), clustering (k-means, hierar-
chical clustering, density-based clusteering), association (one-dimensional, multi-dimensional,
multilevel association, constraint-based association)” [63];

“DM stands at the confluence of the fields of statistics and machine learning” [52];
“DM is a term that covers a broad range of techniques being used in a variety of industries”

[50];
“DM is the core of the knowledge discovery in databases process, involving the inferring of

algorithms that explore the data, develop the model and discover previously unknown patterns”
[43].

DM is a process of finding reasonable correlations, repeating patterns and trends in large Data
Bases (DBs) and Big Data (BD). As a basis of our research, we use the publications [18–21,
24–27, 29–31, 33–35, 35–41, 43–53, 62, 63, 66, 67]. In the literature, different areas of the AI are
determined as components of the DM. For example, the algorithms of decision making, pattern
recognition, neural networks, genetic algorithms, etc.

Extending and modifying [5, 8], here we make a review of some of the problems related to
the above ones, those already existing, and those planned for future research. Everywhere we
emphasize on:

• the way of the IVIFS-estimation of the process (object) up to now (if any);

• other ways for IVIFS-realization of this estimation;

• possible extensions or generalizations of already existing IFL-estimations of the corre-
sponding processes (objects) and ways for their modifications.
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2.1 IVIF-estimations in expert systems, data bases, data warehouses,
big data, OLAP-structures

As the author mentioned in [8], “A lot of colleagues already assert that the Expert Systems (ESs)
are dying. The author supports the idea that they will live their “Renaissance”, obtaining a
special place in the instrumentation of DM. Preserving their basic purpose to generate a new
knowledge by answering to hypotheses, we can essentially extend the area of their possibilities.
When some unclear situation arises in a process controled by DM-tools, and when some hypothe-
ses for its future development are generated, then the new type of ESs can help.”

In [4], the concept of an Intuitionistic Fuzzy ES (IFES) was introduced. It was essentially
extended in [5, 22, 23, 42]. In these ESs, each fact F has an IF-estimations 〈µ(F ), ν(F )〉, de-
termining its degrees of validity and non-validity. So, the answer whether a given hypothesis
is valid or not, obtains essentially more precise evaluation. In near future, we will introduce
an extension of the IFES which facts will have the IVIF-estimations 〈M(F ), N(F )〉, where
M(F ), N(F ) ⊆ [0, 1]and supM(x) + supN(x) ≤ 1. So, we eilll define Interval-Valued IFES
(IVIFES). A next step of the extensions will be the introduction of facts that contain moments of
time, when they became valid, and moments in which they stopped being valid (a sequence of
time-moments t1, t2, ..., tn). Then (cf. [5]), on one hand, we can answer to time related questions
(“at the moment”, “once”, “sometimes”, “for long/short time”, “often”, “rarely”, “for short pe-
riod”, “for long period”, etc.). On the other hand, the IVIFES rules can have essentially complex
forms, containing different logical operations (conjunction, disjunction, implication, negation,...),
quantifiers (“for existence” and “for all”) and modal operators in their antecedents. In addition,
the facts and rules can have priorities that will determine whether a given fact or rule can stay in
the DB or must be changed with another one.

In future, the ES-answers can be additionally, so they can have optimistic, pessimistic, or
another form. Similar directions for extensions of the DBs, Data Warehouses (DWs), BD, OLAP-
structures, etc. can be realized.

As we assumed in [8], writing for IFESs and now – for IVIFESs, solving each of the above
problems or, of course, all of them, will promote not only the theory and application of IVIFSs,
but also the research in the area of DM, too.

In the next section, an example is given that can be used as an illustration for determining of
M - and N -evaluations of the facts.

2.2 IVIF-estimations of a procedure for inductive reasoning

As it is mentioned in [31], “the rule induction is one of the fundamental tools of DM. Usually
rules are expressions of the form

if (attribute1, value1)&(attribute2, value2)& ... &(attributen, valuen)

then (decision, value).”

If we use the IFLs tools, we obtain sequentially

(attribute1, value1, µ1, ν1),
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(attribute2, value2, µ2, ν2),

. . .

(attributen, valuen, µn, νn),

where, in the simplest case

µi =


1, if valuei is anticipated (expected, correct, etc.)
0, if valuei is not anticipated (not expected, incorrect, etc.)
∗, if there is no information about attributei

and νi = 1− µi, but in more general case µi, νi ∈ [0, 1] and µi + νi ≤ 1.
Now, the final estimation have the IVIF-form (decision, value,M,N), where M,N ⊆ [0, 1]

and supM + supN ≤ 1.
Let p be the number of degrees µi that are equal to 1, q be the number of degrees νi that are

equal to 1, r be the number of degrees µi that satisfy 1 > µi >
1
2
, s be the number of degrees νi

that satisfy 1 > νi >
1
2
. Obviously, p+ q + r + s ≤ n.

Now, the final estimation can have the IVIF-form (decision, value,M,N), where

M =

[
p

n
,
p+ r

n

]
, N =

[
q

n
,
q + s

n

]
.

Therefore, M,N ⊆ [0, 1] and supM + supN ≤ 1.
Hence, we obtain more precise estimation for the validity of the procedure for inductive rea-

soning than the cases of standard, fuzzy and intuitionistic fuzzy inductive reasoning. If in the
beginning we determine some threshold of validity tv, then we can assert that a decision is pos-
itive sufficiently valid, if supM > tv and it is strongly positive sufficiently valid, if infM > tv.
On the other hand, if we determine some treshold of non-validity tn then we can assert that a
decision is negative sufficiently valid, if inf N < tn and it is is strongly negative sufficiently
valid, if supN < tn.

2.3 IVIF-estimations in decision making procedures

The procedures for decision making include multi-criteria decision making procedures, that can
be re-organized so that they to use IVIF-estimations. For example, let us have s experts who
must estimate some object or process. Let m of them estimate it as “perfect”, “the best” or “very
good”; n of them – as “worst” or “very bad”; r – as “good”, “suitable” or “useful”; and s are
“bad”, “unsuitable” or “useless”, then we can estimate the object or process by IVIF-estimations,
using the formulas from the previous Section.

In [8], a new type of decision making procedure is discussed, based on the apparatus of the
intercriteria analysis (see, e.g., [12, 14]). It is called intercriteria decision making. Its aim is to
find dependences among the used criteria. For example, it is very suitable when separate experts
offer different criteria for use in concrete procedure. Now, after finishing of the procedure, we
can determine whether there are connections between some of these criteria. In IFS-case, this
procedure is discussed in [17], while for the IVIFS-case similar research is appeared. The new
method is based on the apparatus of the index matrices (see [2, 7]).
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2.4 IVIFS-estimations in pattern recognition procedures

The apparatus of the IVIFSs is suitable for estimation of different pattern recognition procedures.
Here, we give the following two short examples, inspired by [9].

Example 1. Let us have the original pattern – in our example, triangle ABC that must be com-
pared to an other pattern – e.g., triangle AFG (see Fig. 1). Let the section BC be fuzzified, i.e.,
it be modified to the region BCED.

Let us denote by #X the surface of region X and let

s = #ABHG,

a = #AFIE,

b = #FDI,

c = #DBHI,

d = #CHE,

e = #CEIH.

Obviously, a+ b+ c+ d+ e = s.
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Figure 1. Graphic visualization of Example 1.

Therefore, the IVIF-degree of coincidence of the second pattern with the original pattern will
be 〈[

a

s
,
a+ e

s

]
,

[
b

s
,
b+ c

s

]〉
.

This simple example shows the IVIF-possibility to evaluate more details than the FS- or IFS-

tools, because in the fuzzy set case, the evaluation would to be only
b

a
and in the IFS-case, it

would to be
〈
a

s
,
b+ c

s

〉
.
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The degree of uncertainty is determined as the interval〈[
0,
d

s

]〉
.

More complex is the following example.

Example 2. Let us have (see Fig. 2) the original pattern – in the new example, again triangle
ABC that must be compared to the other pattern – now triangle AGI . Let the sections BC and
GI be fuzzified, i.e., they are modified to the regions BCED and FGIH . Let

s = #ABLI,

a = #AFKE,

b = #FGMK,

c = #GDM,

d = #DBLM,

e = #EKJC,

f = #CJH,

g = #IHJL,

h = #JKML.

Obviously, a+ b+ c+ d+ e+ f + g + h = s.
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Figure 2. Graphic visualization of Example 2.

Now, the IVIF-degree of coincidence of the second pattern with the original pattern will be〈[
a

s
,
a+ b+ e+ h

s

]
,

[
c

s
,
c+ d

s

]〉
.

This simple example shows the IVIF-possibility to estimate more detail than the fuzzy set or IFS-

tools, because in the fuzzy set case, the estimation would to be only
b

a
and in the IFS-case, it

would to be
〈
a

s
,
b+ c

s

〉
. The degree of uncertainty is determined as the interval

〈[
0, f+g

s

]〉
.
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2.5 IF-estimations in neural networks and evolutionary algorithms

The first results related to the IF-estimations in neural networks date back to the year 1990 [32]
and they are continued in [15, 16, 54–61, 64, 65]. These estimations are related, from one side,
to the initial values in the input vectors that now will have the form 〈Mi, Ni〉 for the i-th input
neuron, where Mi, Ni ⊆ [0, 1] and supMi + supNi ≤ 1. From the other hand, the weight
coefficients of the connections between the nodes with the form 〈Vi,j,Wi,j〉 for the i-th and j-
th neurons lying in sequential layers, where Vi,j,Wi,j ⊆ [0, 1] and supVi,j + supWi,j ≤ 1.
When some of these coefficients have IF-truth-value 〈[0, 0], [1, 1]〉, then we can interpret that the
respective object (nodes or arcs between nodes) does not exists. So, we can modify the neural
network structure in current time.

In [28], it is mentioned that “The paradigm of Evolutionary Algorithms (EAs) consists of
stochastic search algorithms inspired by the process of neo-Darwinian evolution. ... There
are several kinds of EAs, such as Genetic Algorithms, Genetic Programming, Classifier Systems,
Evolution Strategies, Evolutionary Programming, Estimation of Distribution Algorithms, etc.”

In this direction of research, in near future the focus will be oriented to the mentioned above
EAs.

In [8], some other areas of DM that can use IF-estimations, were described. All they can use
IVIF-estimations, too. Some of these areas are the following.

• machine and e-learning

• clusterisation and classification of data

• knowledge discovery processes

• processes for imputation (filling in) of missing data

and others.

3 Conclusion

The present paper aims to offer a new look on different aspects and procedures of DM from the
point of view of IVIFSs.

Having in mind that elements of each IVIFSs have four parameters (infM, supM, inf N,

supN ), we can mention that in all the commented areas of DM, we see the application of interval-
valued intuitionistic fuzziness as a tool for more precise estimation, which takes into account
possibly simultaneously opposite patterns of behaviour, as well as uncertainty.

In [68], an idea for a new direction in AI was formulated by L. Zadeh, based on the concept of
a granule. But, by the moment there is not a good formal definition of this concept. Probably, the
estimations of the IVIFS-elements can be used for a model. Really, the geometrical interpretation
of an IVIFS-element x is given in Figure 3.
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Figure 3. Geometrical interpretation of an IVIFS-element x

Let E be a universe, A = {〈x,M(x),M(x)|x ∈ E} be an IVIFS, and z ∈ E be a fixed
element of the IVIFS. A granule can be defined as the set

Gcrisp(z) = {y|y ∈ E&µ(y) ∈M(z)&ν(y) ∈ N(z)}

(crisp form) or

GIFS(z) = {〈y, µ(y), ν(y)〉|y ∈ E&µ(y) ∈M(z)&ν(y) ∈ N(z)}

(intuitionistic fuzzy form).
Of course, this is only the first step of the development of this idea that has the potential to

develop in future.
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