NIFS 11 (2005), 1, 1-5

INTUITIONISTIC FIZZY IMPLICATIONS AND MODUS PONENS

Krassimir T. Atanassov

CLBME-Bulgarian Academy of Sciences, P.O. Box 12, Sofia-1113, Bulgaria
e-mail: krat@bas.bg

Some variants of intuitionistic fuzzy implications will be discussed, using as a basis the book [1] by Georg Klir and Bo Yuan. A great number of fuzzy implications have been discussed there. In [2] analogous of these implications for the case of intuitionistic fuzzy logics are given (for intuitionistic fuzzy sets and logics see, e.g., [3]). The axioms from [1] are checked for the intuitionistic fuzzy implications. Let us note these implications by $I(x, y)$. The axioms from [1] are the following.

Axiom $1(\forall x, y)(x \leq y \rightarrow(\forall z)(I(x, z) \geq I(y, z))$.
Axiom $2(\forall x, y)(x \leq y \rightarrow(\forall z)(I(z, x) \leq I(z, y))$.
Axiom $3(\forall y)(I(0, y)=1)$.
Axiom $4(\forall y)(I(1, y)=y)$.
Axiom $5(\forall x)(I(x, x)=1)$.
Axiom $6(\forall x, y, z)(I(x, I(y, z))=I(y, I(x, z)))$.
Axiom $7(\forall x, y)(I(x, y)=1$ iff $x \leq y)$.
Axiom $8(\forall x, y)(I(x, y)=I(N(y), N(x)))$, where N is an operation for a negation.
Axiom $9 I$ is a continuous function.
The intuitionistic fuzzy form of the implications from [1] are given below, following [2]. In this case if x is a variable then its truth-value is represented by the ordered couple $V(x)=$ $\langle a, b\rangle$ so that $a, b, a+b \in[0,1]$, where a and b are degree of validity and of non-validity of x.

Bellow we shall assume that for the above three variables x, y and z there hold the equalities: $V(x)=\langle a, b\rangle, V(y)=\langle c, d\rangle, V(z)=\langle e, f\rangle$.

For the needs of the discussion below we shall define the notion of Intuitionistic Fuzzy Tautology (IFT, see [3]) by:
x is an IFT if and only if $a \geq b$.
When an axiom is valid only in IFT sense, in the Table its will be marked by "*". In some definitions we shall use functions $s g$ and $\overline{s g}$:

$$
\begin{aligned}
& s g(x)= \begin{cases}1 & \text { if } x>0 \\
0 & \text { if } x \leq 0\end{cases} \\
& \overline{s g}(x)= \begin{cases}0 & \text { if } x>0 \\
1 & \text { if } x \leq 0\end{cases}
\end{aligned}
$$

In ordinary intuitionistic fuzzy logic the negation of variable x is $N(x)$ such that

$$
V(N(x))=\langle b, a\rangle .
$$

For two variables x and y operation "conjunction" (\&) is defined by:

$$
V(x \& y)=\langle\min (\mu(x), \mu(y)), \max (\nu(x), \nu(y))\rangle
$$

TABLE: List of intuitionistic fuzzy implications

Name	Form of implication	Axioms
Zadeh	$\langle\max (b, \min (a, c)), \min (a, d))$	$2,3,4,5^{*}, 7^{*}, 9$
Gaines-Rescher	$\langle 1-s g(a-c), d . s g(a-c)\rangle$	1,2,3,5
Gödel	$\langle 1-(1-c) \cdot \operatorname{sg}(a-c)$, d.sg $(a-c)\rangle$	1,2,3,4,5,7*
Kleene-Dienes	$\langle\max (b, c), \min (a, d)\rangle$	1,2,3,4, $5^{*}, 6,8,9$
Lukasiewicz	$\langle\min (1, b+c), \max (0, a+d-1)\rangle$	1,2,3,4,5*, 8,9
Reichenbach	$\langle b+a c, a d\rangle$	$2,3,4,5^{*}, 9$
Willmott	$\begin{array}{r} \langle\min (\max (b, c), \max (a, b), \max (c, d)) \\ \quad \max (\min (a, d), \min (a, b), \min (c, d))\rangle \end{array}$	$3^{*}, 4^{*}, 5^{*}, 8,9$
Wu	$\begin{aligned} & \langle 1-(1-\min (b, c)) \cdot s g(a-c) \\ & \quad \max (a, d) \cdot \operatorname{sg}(a-c) \cdot s g(d-b)\rangle \end{aligned}$	1,2,3,5
Klir and Yuan 1	$\left\langle b+a^{2} c, a b+a^{2} d\right\rangle$	2,3,4,5*
Klir and Yuan 2	$\begin{aligned} & \langle c \cdot \overline{s g}(1-a)+s g(1-a) \cdot(\overline{s g}(1-c)+b \cdot s g(1-c)), \\ & \quad d \cdot \overline{s g}(1-a)+a \cdot s g(1-a) \cdot s g(1-c)\rangle \end{aligned}$	2,3,4

In [2] is proved the correctness of the above definitions of implications.
As in the case of ordinary logics, x is a tautology, if $V(x)=\langle 1,0\rangle$.
Theorem 1 Each of the implications from the Table satisfy Modus Ponens in the case of tautology.

Proof: Let $V(x)=\langle 1,0\rangle$, i.e., $a=1, b=0$, and let $V(I(x, y))=\langle 1,0\rangle$. For example, for Second Klir and Yuan's implication we shall obtain that

$$
\begin{aligned}
&\langle 1,0\rangle=\langle c \cdot \overline{s g}(1-a)+s g(1-a) \cdot(\overline{s g}(1-a)+b \cdot s g(1-c)), d \cdot \overline{s g}(1-a)+a \cdot s g(1-a) \cdot s g(1-c)\rangle \\
&=\langle c, d\rangle .
\end{aligned}
$$

Therefore, $c=1$ and $d=0$.
The other checks for this and for the next theorems are similar.
Theorem 2 None of the implications from the Table satisfy Modus Ponens in the case of IFT.

Theorem 3 For every one of the implications from the Table and for every two variables x and $y, I(x \& I(x, y), y)$ is an IFT.

Proof: We shall check the first Klir and Yuan's implication. The other checks are similar, but this one is the most complex.

$$
\begin{gathered}
V(I(x \& I(x, y), y))=V(I(\langle a, b\rangle \& I(\langle a, b\rangle,\langle c, d\rangle),\langle c, d\rangle)) \\
\left.=V\left(I\left(\langle a, b\rangle \&\left\langle b+a^{2} c, a b+a^{2} d\right\rangle\right),\langle c, d\rangle\right)\right) \\
=V\left(I\left(\left\langle\min \left(a, b+a^{2} c\right), \max \left(b, a b+a^{2} d\right)\right\rangle,\langle c, d\rangle\right)\right) \\
=\left\langle\max \left(b, a b+a^{2} d\right)+\min \left(a, b+a^{2} c\right)^{2} \cdot c, \min \left(a, b+a^{2} c\right) \cdot \max \left(b, a b+a^{2} d\right)+\min \left(a, b+a^{2} c\right)^{2} \cdot d\right\rangle
\end{gathered}
$$

Let
$A=\max \left(b, a b+a^{2} d\right)+\min \left(a, b+a^{2} c\right)^{2} . c-\min \left(a, b+a^{2} c\right) \cdot \max \left(b, a b+a^{2} d\right)-\min \left(a, b+a^{2} c\right)^{2} . d$.

We shall study two cases.
Case 1: $a \leq b+a^{2} c$. Then

$$
b \geq a-a^{2} c=a-a^{2}+a^{2} .(1-c) \geq a-a^{2}+a^{2} d
$$

i.e.,

$$
\begin{equation*}
a^{2} d \leq b-a+a^{2} \tag{*}
\end{equation*}
$$

For A we obtain

$$
\begin{gathered}
A=\max \left(b, a b+a^{2} d\right)+a^{2} c-a \cdot \max \left(b, a b+a^{2} d\right)-a^{2} d \\
=\max \left(b, a b+a^{2} d\right) \cdot(1-a)+a^{2} \cdot(c-d)
\end{gathered}
$$

If $c \geq d$, obviously, $A \geq 0$. Let $c<d$. Then from $a \leq b+a^{2} c$ and $\max \left(b, a b+a^{2} d\right) \geq b$, it follows that

$$
A \geq b .(1-a)+a^{2} .(c-d)=b-a b+a^{2} c-a^{2} d
$$

$\left(\right.$ from $\left.\left({ }^{*}\right)\right)$

$$
\begin{gathered}
\geq b-a b+a^{2} c-a^{2} d-b+a-a^{2}=-a b+a^{2} c+a-a^{2} \\
\geq a-a b-a^{2}=a .(1-a-b) \geq 0
\end{gathered}
$$

Case 2: $a>b+a^{2} c$. Then

$$
\begin{gathered}
A=\max \left(b, a b+a^{2} d\right)+\left(b+a^{2} c\right)^{2} \cdot c-\left(b+a^{2} c\right) \cdot \max \left(b, a b+a^{2} d\right)-\left(b+a^{2} c\right)^{2} \cdot d \\
=\max \left(b, a b+a^{2} d\right) \cdot\left(1-b-a^{2} c\right)+\left(b+a^{2} c\right)^{2} \cdot(c-d)
\end{gathered}
$$

Because $1-b-a^{2} c \geq 1-a-b \geq 0$, if $c \geq d$, then, $A \geq 0$. Let $c<d$. Then from $a \geq \min \left(a, b+a^{2} c\right)$ it follows that

$$
\begin{gathered}
A=\max \left(b, a b+a^{2} d\right)+\min \left(a, b+a^{2} c\right)^{2} \cdot c-\min \left(a, b+a^{2} c\right) \cdot \max \left(b, a b+a^{2} d\right)-\min \left(a, b+a^{2} c\right)^{2} \cdot d \\
=\max \left(b, a b+a^{2} d\right)\left(1-b-a^{2} c\right)+\min \left(a, b+a^{2} c\right)^{2}(c-d) \\
\geq\left(a b+a^{2} d\right) \cdot\left(1-b-a^{2} c\right)+a^{2} \cdot c-a^{2} d \\
=a b+a^{2} d-a b^{2}-a^{2} b d-a^{3} b c-a^{4} c d+a^{2} c-a^{2} d \\
=a b(1-b-a d)+a^{2} c \cdot\left(1-a b-a^{2} d\right) \\
\geq a b(1-b-a)+a^{2} c \cdot(1-b-a) \geq 0
\end{gathered}
$$

Therefore, in all cases $A \geq 0$, i.e. for the first Klir and Yuan's implication the expression $I(x \& I(x, y), y)$ is an IFT.

References:

[1] Klir G. and Bo Yuan, Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey, 1995.
[2] Atanassov K., B. Papadopoulos and A. Syropoulos, Variants of intuitionistic fuzzy implications. submitted to International Journal of Approximate Reasonong.
[3] Atanassov, K. Intuitionistic Fuzzy Sets. Springer Physica-Verlag, Heidelberg, 1999.

