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Some variants of intuitionistic fuzzy implications will be discussed, using as a basis the
book [1] by Georg Klir and Bo Yuan. A great number of fuzzy implications have been
discussed there. In [2] analogous of these implications for the case of intuitionistic fuzzy
logics are given (for intuitionistic fuzzy sets and logics see, e.g., [3]). The axioms from [1] are
checked for the intuitionistic fuzzy implications. Let us note these implications by I(x,y).

The axioms from [1] are the following.
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Axiom 9 [ is a continuous function.
The intuitionistic fuzzy form of the implications from [1] are given below, following [2].
In this case if = is a variable then its truth-value is represented by the ordered couple V' (z) =
(a,b) so that a,b,a+ b € [0,1], where a and b are degree of validity and of non-validity of x.
Bellow we shall assume that for the above three variables x,y and z there hold the
equalities: V(z) = (a,b),V(y) = (¢, d), V(2) = (e, f).
For the needs of the discussion below we shall define the notion of Intuitionistic Fuzzy

Tautology (IFT, see [3]) by:



x is an IF'T if and only if a > b.

When an axiom is valid only in IFT sense, in the Table its will be marked by “*”. In

some definitions we shall use functions sg and sg:

1 ifz>0
sg(x) =

0 ifz<0

0 ifx>0
sg(x) =

1 ifx<0

In ordinary intuitionistic fuzzy logic the negation of variable z is N(z) such that
V(N(x)) = (b, a).
For two variables x and y operation “conjunction” (&) is defined by:

V(adey) = (min(p(z), p(y)), max(v(z), v(y))),

TABLE: List of intuitionistic fuzzy implications

Name Form of implication Axioms
Zadeh max (b, min(a, c¢)), min(a, d)) 2,3,4,5%,7%.,9
Gaines-Rescher | (1 — sg(a — ¢),d.sg(a — ¢)) 1,2,3,5
Godel 1 —(1—-c¢).sgla—c),dsgla—c)) 1,2,3,4,5,7*

Kleene-Dienes

1,2,3,4,5%,6,8,9

{
{
{
(max(b, c), min(a, d))
<
<
<

Lukasiewicz min(1,b + ¢), max(0,a + d — 1)) 1,2,3,4,5*8.9
Reichenbach b+ ac, ad) 2,3,4,5*.9
Willmott min(max(b, ¢), max(a, b), max(c, d)),

max(min(a, d), min(a, b), min(c, d))) 3*,4%,5%.8,9
Wu (1 = (1 —min(b,c)).sg(a — ¢),

max(a,d).sg(a — c).sg(d — b)) 1,2,3,5
Klir and Yuan 1 | (b+ a?c,ab + a*d) 2,3,4,5*
Klir and Yuan 2 | (¢.35g(1 — a) + sg(1 — a).(5g(1 — ¢) + b.sg(1 — ¢)),

d.35g(1 —a)+ a.sg(l —a).sg(l —c)) 2,3,4




In [2] is proved the correctness of the above definitions of implications.

As in the case of ordinary logics, x is a tautology, if V(z) = (1,0).
Theorem 1 Each of the implications from the Table satisfy Modus Ponens in the case of
tautology.
Proof: Let V(z) = (1,0), i.e., a = 1,b = 0, and let V(I(x,y)) = (1,0). For example, for

Second Klir and Yuan’s implication we shall obtain that
(1,0) = (¢.59(1 —a) + sg(1 —a).(5g(1 —a) + b.sg(1 —¢)),d.5g(1 — a) + a.sg(1 — a).sg(1 — c))

= (c,d).

Therefore, c =1 and d = 0.

The other checks for this and for the next theorems are similar.
Theorem 2 None of the implications from the Table satisfy Modus Ponens in the case of
IFT.
Theorem 3 For every one of the implications from the Table and for every two variables x
and y, [(x&I(z,y),y) is an IFT.
Proof: We shall check the first Klir and Yuan’s implication. The other checks are similar,

but this one is the most complex.
V(I(x&l(z,y),y)) = V(I({a,b)&I((a,b), (c,d)), {c,d)))

= V(I({a,b)&(b + a>c,ab + a*d)), (¢, d)))
= V(I({min(a, b + a*c), max(b, ab + a*d)), {c,d)))
= (max(b, ab+ a*d) + min(a, b + a*c)*.c, min(a, b + a*c). max(b, ab 4 a*d) + min(a, b + a*c)*.d)
Let

A = max(b, ab+a*d) +min(a, b+a’*c)*.c—min(a, b+a’c). max(b, ab+a*d) —min(a, b+a’c)?.d.

We shall study two cases.
Case 1: a < b+ a’c. Then

b>a—-dc=a—a*+ad’.(1—c)>a—ad®+add,



ie.,

a’d < b—a+d. (*)

For A we obtain
A = max(b, ab + a*d) + a*c — a. max(b, ab + a*d) — a*d

= max(b, ab + a*d).(1 — a) + a*.(c — d)

If ¢ > d, obviously, A > 0. Let ¢ < d. Then from a < b+ a?c and max(b, ab + a*d) > b,
it follows that

A>b(1—a)+a*(c—d)=b—ab+a’c—ad

(from (%))

>h—ab+a’c—a’d—b+a—a®=—ab+d’c+a—ad?

>a—ab—a*=a.(l—a—0b)>0.

Case 2: a > b+ a®c. Then
A = max(b,ab + a*d) + (b + a’c)®.c — (b + a*c). max(b, ab + a*d) — (b + a’c)*.d

= max(b, ab + a®d).(1 — b — a*c) + (b + a*c)*.(c — d).
Because 1 —b—a?c >1—a—b >0, if ¢ > d, then, A > 0. Let ¢ < d. Then from
a > min(a, b+ a’c) it follows that

A = max(b, ab+a*d) +min(a, b+a’*c)*.c—min(a, b+a’c). max(b, ab+a*d) —min(a, b+a’c)*.d

= max(b, ab + a’d)(1 — b — a*c) + min(a, b + a*c)*(c — d)
> (ab+ a*d).(1 — b — a*c) + a*.c — a*d
= ab+ a*d — ab® — a*bd — a’bc — a*ed + a’c — a*d
=ab(1 — b —ad) + a*c.(1 — ab — a*d)
>ab(l1—b—a)+a*c(l—b—a)>0.

Therefore, in all cases A > 0, i.e. for the first Klir and Yuan’s implication the expression

I(x&I(z,y),y) is an IFT.
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