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Abstract

The conditional probability on the Kôpka D-poset is studied. The notions Kôpka
D-poset and conditional probability is introduced. The basic properties of conditional
probability on the Kôpka D-posets is proved.
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1 Introduction

In quantum structures play an important function the notion D-poset. It was standing
independently in Slovak school (D-posets,[9]) and American school (effect algebras,[5]).
D-posets with the new property product create a good space for the hopefull probability
aplications.

In this paper will by the main idea similarly as in [10]and [17] builted on distribution
function only. The existence of joint distribution and convergence theorem has been proved
in [10], the Central limit theorem has been proved in [17]. We lead notion conditional
probability on the Kôpka D-posets in the initiated meaning.

2 Kôpka D-poset -basic notions

Definition 1 By a D-poset D it is consider the algebraic structure D = (D,≤,−, 0, 1)
such that:

1) ≤ is a partial ordering on D with the least element 0 and the greatest element 1.
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2) − : D ×D → D is a partial binary operation, where b− a is defined iff a ≤ b and

• i) b− a ≤ b,

• ii) b− (b− a) = a,

• iii) a ≤ b ≤ c⇒ c− b ≤ c− a, (c− a)− (c− b) = b− a.

Definition 2 Let system D = (D,≤,−, 0, 1) be a D-poset. It is called the Kôpka D-poset,
if there is a binary operation ∗ : D ×D −→ D, which is commutative, associative, and

i) a ∗ 1 = a, a ∈ D,

ii) a ≤ b⇒ a ∗ c ≤ b ∗ c, a, b, c ∈ D,

iii) a− (a ∗ b) ≤ 1− b, a, b, c ∈ D.

Example 1 Let (Ω, S, P ) be a classical Kolmogorov probability space, F be a system of
fuzzy events,

F = {µA : Ω −→ 〈0, 1〉, µA is S-measurable}.

Partial ordering is defined

µA ≤ µB ⇐⇒ µA(ω) ≤ µB(ω), ∀ω ∈ Ω

With respect to this ordering the least element is 0Ω and the greatest element is constant
function 1Ω.
Binary operations ”− ”, ” ∗ ” can be defined:

− : F × F −→ F , iff µA ≤ µB then (µB − µA)(ω) = µB(ω)− µA(ω), ∀ω ∈ Ω,

∗ : F × F −→ F , iff µA ∗ µB(ω) = µA(ω).µB(ω), ∀ω ∈ Ω.

The algebraic structure F = (F,≤,−, ∗, 0Ω, 1Ω) is Kôpka D-poset.

Definition 3 Kôpka D-poset D with the following property:

if k ≤ l then a ∗ (l − k) = a ∗ l − a ∗ k, k, l, a ∈ D,

is called strong Kôpka D-poset.

Definition 4 A state on a Kôpka D-poset D is any mapping m : D → 〈0, 1〉 satisfying the
following properties:
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• i) m(1) = 1,m(0) = 0,

• ii) an ↗ a⇒ m(an)↗ m(a),

• iii) an ↘ a⇒ m(an)↘ m(a).

Definition 5 D-additive state on a Kôpka D-poset D is any mapping m : D → 〈0, 1〉,
where

a ≤ b =⇒ m(b) = m(b− a) +m(a)

Definition 6 Let J = {(−∞, t); t ∈ R}. An observable on D is any mapping x : J → D
satisfying the following conditions:

• i) An ↗ R⇒ x(An)↗ 1,

• ii) An ↘ ∅ ⇒ x(An)↘ 0,

• iii) An ↗ A⇒ x(An)↗ x(A).

3 Conditional probability

Conditional probability (of A with respect to B) is the real number P (A|B) such that

P (A ∩B) = P (B).P (A|B).

When A,B are independent then P (A|B) = P (A), then event A does not depend on the
occuring of event B. Another point of view:

P (A ∩B) =
∫
B
P (A|B)dP .

The number P (A|B) can be regarded as a constant function. Constant functions are
measurable with respect to the σ-algebra S0 = {∅,Ω},

{ω ∈ Ω; f(ω) ∈ C} = ∅ or {ω ∈ Ω; f(ω) ∈ C} = Ω.

Generally P (A|S0) can be defined for any σ-algebra S0 ⊂ S, as an S0-measurable func-
tion such that

P (A ∩ C) =
∫
C
P (A|S0)dP,C ∈ S0.

If S0 = S, then we can put P (A|S0) = χA since χA is S0-measurable, and∫
C
χAdP =

∫
Ω
χCχAdP =

∫
Ω
χA∩CdP = P (A ∩ C).

An importat example of S0 is the family of all pre-images of a random variable ξ : Ω→ R
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S0 = {ξ−1(B);B ∈ σ(J)}

In this case we shall write P (A|S0) = P (A|ξ), hence∫
C
P (A|ξ)dP = P (A ∩ C), C = ξ−1(B), B ∈ σ(J).

By the transformation formula

P (A ∩ ξ−1(B)) =
∫
ξ−1(B)

g ◦ ξdP =
∫
B
gdPξ, B ∈ σ(J).

Proposition 1 Let D be a Kôpka D-poset, m : D → 〈0, 1〉 be a state, x : J → D be an
observable. Define F : R→ 〈0, 1〉 by the formula

F (t) = m(x((−∞, t))).

Then F has the following properties:

• (i) F is non-decreasing,

• (ii) F is left continuos in any point t0 ∈ R,

• (iii) limt→∞F (t) = 1,

• (iv) limt→−∞F (t) = 0.

Proof. Let t < s, put t1 = t, tn = s (n = 1, 2, 3, ...). Then tn ↗ s, hence

F (tn) = m(x((−∞, tn)))↗ m(x((−∞, s))) = F (s).

Therefore F (t) = F (t1) ≤ F (s), hence F is non-decreasing. If tn ↗ t, then x((−∞, tn))↗
x((−∞, t)), hence

F (tn) = m(x((−∞, tn)))↗ m(x((−∞, t))) = F (t),

and therefore F is left continuous in t. Similarly the equalities F (∞) = 1, F (−∞) = 0 can
be proved.

Remark 1 There exists exactly one measure

λF : B(R)→ 〈0, 1〉,

such that

λF (〈u, v)) = F (v)− F (u),

and there holds the following equalities

λF (〈u, v)) = F (v)− F (u) = m(x((−∞, v)))−m(x((−∞, u))) =
m(x((−∞, v))− x((−∞, u))).
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Proposition 2 Let D be a Kôpka D-poset, a ∈ D, m : D → 〈0, 1〉 be a state, x : J → D
be an observable. Define G : R→ 〈0, 1〉 by the formula

G(t) = m(a ∗ x((−∞, t)))

Then G has the following properties:

• (i) G is non-decreasing,

• (ii) G is left continuos in any point t1 ∈ R,

• (iii) limt→∞G(t) = 1,

• (iv) limt→−∞G(t) = 0.

Proof. Let G(t) = m(a ∗ x((−∞, t))) and G : R→ 〈0, 1〉.

• (i) G is non-decreasing
Let t1 < t2.
Then

x((−∞, t1)) ≤ x((−∞, t2)) =⇒ a ∗ x((−∞, t1)) ≤ a ∗ x((−∞, t2))

Hence

G(t1) = m(a ∗ x((−∞, t1))) ≤ m(a ∗ x((−∞, t2))) = G(t2)

• (ii) G is left continuos in any point t1 ∈ R.
Let tn ↗ t1.
Then

x((−∞, tn))↗ x((−∞, t1)) =⇒ a ∗ x((−∞, tn))↗ a ∗ x((−∞, t1))

Hence

G(tn) = m(a ∗ x((−∞, tn)))↗ m(a ∗ x((−∞, t1))) = G(t1)

• (iii) limt→∞G(t) = 1.
Let tn ↗∞.
Then

limt→∞G(tn) = m(a ∗ x((−∞,∞)) = m(a ∗ 1) = 1

• (iv) limt→−∞G(t) = 0.
Let tn ↘ −∞.
Then
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limt→−∞G(tn) = m(a ∗ 0) = 0.

Remark 2 The function G : R→ 〈0, 1〉 defined by

G(t) = m(a ∗ x((−∞, t)))

is a distribution function of observable x. There exists exactly one measure

λG : B(R)→ 〈0, 1〉,

such that

λG(〈u, v)) = G(u)−G(v).

Proposition 3 Let D be a Kôpka D-poset, a ∈ D, m : D −→ 〈0, 1〉 be a D-additive state,
x : J −→ D be an observable, F,G : R −→ 〈0, 1〉 be distribution functions

F (t) = m(x((−∞, t)))

and

G(t) = m(a ∗ x((−∞, t))).

Then for the Lebesque-Stielties measures λG, λF there holds following

λG ≤ λF .

Proof.

λG(〈u, v)) = G(u)−G(v) = m(a ∗ x((−∞, v)))−m(a ∗ x((−∞, u))) =

= m(a ∗ (x((−∞, v))− x((−∞, u)))) ≤ m(x((−∞, v))− x((−∞, u))) = λF (〈u, v)).

Theorem 1 Let D be a Kôpka D-poset, a ∈ D, m : D −→ 〈0, 1〉 be a D-additive state,
x : J −→ D be an observable, F,G : R −→ 〈0, 1〉 be distribution functions

F (t) = m(x((−∞, t)))

and

G(t) = m(a ∗ x((−∞, t))).

Then there exists function f : R −→ R, such that∫
(−∞,t)

fdλF = m(a ∗ x((−∞, t))).

Proof. We know, that

λG(〈u, v)) ≤ λF (〈u, v)).
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for every u, v ∈ R, u ≤ v. Therefore λG(B) ≤ λF (B) for any B ∈ σ(J). Assume, that
λF (B) = 0, then there holds

0 ≤ m(a ∗ x(B)) = λG(B) ≤ λF (B) = 0,

and according to Radon-Nikodym theorem there exists function f such that

λG(B) =
∫
B

fdλF ,

for every B ∈ σ(J).

Definition 7 Let D be a Kôpka D-poset, a ∈ D, m : D −→ 〈0, 1〉 be a D-additive state,
x : J −→ D be an observable. Then the conditional probability p(a|x) : R −→ R, is a Borel
measurable function (i.e. B ∈ J =⇒ f−1(B) ∈ σ(J) such that∫

(−∞,t)
fdλF = m(a ∗ x(−∞, t)),

for any t ∈ R.

4 Basic properties of a conditional probability

Theorem 2 Let p(a|x) be a version of conditional probability, then there almost everywhere
holds

• i) p(0|x) = 0, p(1|x) = 1,

• ii) 0 ≤ p(a|x) ≤ 1, a ∈ D

• iii) if an ↗ a =⇒ p(an|x)→ p(a|x).

Proof. For every B ∈ J ,∫
B

p(0|x)dλF = m(0 ∗ x(B)) = m(0) = 0.

Now let p(1|x) = 1, then∫
B

p(1|x)dλF = m(1 ∗ x(B)) = m(x(B)) =
∫
R

1dλF = 1.

We prove the second property

0 = m(0) = m(a ∗ x(∅)) ≤ m(a ∗ x(B)) =
∫
B

p(a|x)dλF ≤
∫
R

p(a|x)dλF = m(1) = 1.

Consider the sets A0, A1, where

A0 = {t ∈ R; p(a|x) < 0},
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A1 = {t ∈ R; p(a|x) > 1},

then measure λF of the sets A0, A1 is equal 0. For example, let λF (A0) > 0, then∫
A0

p(a|x)dλF <
∫
A1

0dλF = 0,

what is contradiction. And finally, third property, let an ↗ a then

m(a ∗ x(B))↗ m(a ∗ x(B)).

Therefore∫
B
limn→∞p(an|x)dλF = limn→∞p(an|x)dλF = limn→∞m(an ∗ x(B)) = m(a ∗ x(B)) =∫

B
p(a|x)dλF .
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