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Abstract

The conditional probability on the Kopka D-poset is studied. The notions Kopka
D-poset and conditional probability is introduced. The basic properties of conditional
probability on the Kopka D-posets is proved.
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1 Introduction

In quantum structures play an important function the notion D-poset. It was standing
independently in Slovak school (D-posets,[9]) and American school (effect algebras,|[5]).
D-posets with the new property product create a good space for the hopefull probability
aplications.

In this paper will by the main idea similarly as in [10]and [17] builted on distribution
function only. The existence of joint distribution and convergence theorem has been proved
in [10], the Central limit theorem has been proved in [17]. We lead notion conditional
probability on the Kopka D-posets in the initiated meaning.

2 Kopka D-poset -basic notions
Definition 1 By a D-poset D it is consider the algebraic structure D = (D, <,—,0,1)

such that:

1) < is a partial ordering on D with the least element O and the greatest element 1.
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2) —: D x D — D is a partial binary operation, where b — a is defined iff a < b and

e i)b—a<hb,
e ii))b—(b—a)=a,
e iii)a<b<c=c—b<c—a,(c—a)—(c—b)=b—a.

Definition 2 Let system D = (D, <,—,0,1) be a D-poset. It is called the Kopka D-poset,
iof there is a binary operation x : D X D — D, which is commutative, associative, and

i)ax1l=a,a€D,
it)a<b=axc<bxc,abceD,
iii) a— (axb) <1—0b,a,bceD.

Example 1 Let (2,5, P) be a classical Kolmogorov probability space, F be a system of
fuzzy events,

F={pua:Q—(0,1), ua is S-measurable}.
Partial ordering is defined

pa < pp = pa(w) < pp(w), Yw € Q

With respect to this ordering the least element is O and the greatest element is constant
function 1q.
Binary operations 7 — 7,7 %7 can be defined:

— P X F — Fiff pa < pp then (up — pa)(w) = pp(w) — pa(w), Yw € €,

# 1 P F — Fiff pia# pp(w) = pa(w).pp(w), Yw € Q.

The algebraic structure F' = (F, <, —, *,0q, lg) is Kopka D-poset.

Definition 3 Kopka D-poset D with the following property:
ifk <lthenax(l—k)=axl—axk, k,l,a€ D,

15 called strong Kopka D-poset.

Definition 4 A state on a Képka D-poset D is any mapping m : D — (0, 1) satisfying the
following properties:
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e ;)m(l) =1,m(0) =0,
e ii)a, /a=m(a,) /m(a),
o 1) a, \ya = m(a,) \ym(a).

Definition 5 D-additive state on a Kdpka D-poset D is any mapping m : D — (0, 1),
where

a<b= m(b) =m(b—a)+ ma)

Definition 6 Let J = {(—o0,t);t € R}. An observable on D is any mapping x : J — D
satisfying the following conditions:

e i)A, "R=uz(4,) "1,
o i) An N0 = 2(An) O,
o iii) A, S A= x(A,) S x(A).

3 Conditional probability

Conditional probability (of A with respect to B) is the real number P(A|B) such that
P(ANB) = P(B).P(A|B).

When A, B are independent then P(A|B) = P(A), then event A does not depend on the
occuring of event B. Another point of view:

P(ANB) = [, P(A|B)dP

The number P(A|B) can be regarded as a constant function. Constant functions are
measurable with respect to the o-algebra Sy = {0, Q},

{lweflwelCt=0or{we; fw)elC} =0

Generally P(A|Sy) can be defined for any o-algebra Sy C S, as an Sp-measurable func-
tion such that

P(ANC) = [, P(A|Sy)dP,C € Sp.
If S =S, then we can put P(A|Sy) = x4 since x4 is Sp-measurable, and

fCXAdP:fQXCXAdP:fQXAmchZP(AﬂC).

An importat example of S is the family of all pre-images of a random variable £ : Q@ — R
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So ={1(B); B e a(J)}
In this case we shall write P(A|Sy) = P(A[¢), hence
Jo P(A[)dP = P(ANC),C=¢1(B),B € a(J).
By the transformation formula

P(ANEN(B)) = [i1 90 &P = [, 9dPe, B € o ().

Proposition 1 Let D be a Kopka D-poset, m : D — (0,1) be a state, x : J — D be an
observable. Define F': R — (0,1) by the formula

F(t) = m(z((=00,1))).
Then F' has the following properties:
e (i) F' is non-decreasing,
o (ii) F is left continuos in any point ty € R,
o (iii) limy oo F(t) = 1,
o (iv) limy_, o F(t) =0.
Proof. Lett<s,putt;=t,t,=s(n=123,..). Thent, 7 s, hence
F(tn) = m(z((—00,tn))) / m(x((—00,5))) = F(s).

Therefore F(t) = F(t1) < F(s), hence F' is non-decreasing. If ¢, /¢, then z((—o0,t,))
x((—o00,t)), hence

F(tn) = m(z((—00,tn))) / m(z((—00,t))) = F(t),

and therefore F is left continuous in ¢. Similarly the equalities F'(c0) =1, F'(—o0) = 0 can
be proved. i

Remark 1 There exists exactly one measure
Ar @ B(R) — (0, 1),
such that
Ar((u,v)) = F(v) — F(u),
and there holds the following equalities

Ar((u,0)) = F(v) = F(u) = m(z((=00,v))) —m(z((-00,u))) =

m(z((=00,v)) = z((=00,u))).
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Proposition 2 Let D be a Kdpka D-poset, a € D, m : D — (0,1) be a state, x : J — D
be an observable. Define G : R — (0,1) by the formula

G(t) = m(axz((=00,t)))

Then G has the following properties:

e (i) G is non-decreasing,

o (ii) G is left continuos in any point t; € R,

o (iii) limoG(t) = 1,

o (iv) limy,_G(t) =0.

Proof. Let G(t) = m(a*z((—o0,t))) and G : R — (0, 1).

e (i) G is non-decreasing

Let t; < ts.
Then

z((—00,t1)) < z((—00,t2)) = ax x((—00,t1)) < ax* z((—00,ts))
Hence
G(t1) = mla*z((—00,t1))) < m(a*x((—o0,t3))) = G(t2)
e (ii) G is left continuos in any point ¢, € R.

Let t, 7't
Then

z((—00,t,)) S x((—00,t1)) = axx((—00,t,)) S ax*x((—o0,t1))

Hence

G(tn) = mlaxz((—00,t,))) / m(a*z((—00,11))) = G(t1)
o (iii) lim o G(t) = 1.

Let ¢, ~ oo.
Then

limy—0oG(tn) = m(a * z((—00,00)) =m(ax1) =1
o (iv) limi,_oG(t) = 0.
Let t,, ™\ —o00.
Then
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limi—,_G(t,) = m(a*x0) =0.
Remark 2 The function G : R — (0, 1) defined by
G(t) = m(axz((—00,1)))
1s a distribution function of observable x. There exists exactly one measure
A¢ : B(R) — (0,1),
such that

Aa((u, v)) = G(u) = G(v).

Proposition 3 Let D be a Kopka D-poset, a € D, m : D — (0,1) be a D-additive state,
x:J — D be an observable, F,G : R — (0, 1) be distribution functions

F(t) = m(z((—00,t)))
and
G(t) = m(axz((—00,1))).
Then for the Lebesque-Stielties measures Ag, Ap there holds following
Ae < Ap.
Proof.
Ae((u,v)) = G(u) = G(v) = m(a * 2((—00,v))) — m(a* z((—00,u))) =

= m(a * (2((—00,0)) — a((~00,u)))) < m(x((~00,v)) = a((—00,u))) = Ap({u,0)). ¥

Theorem 1 Let D be a Kopka D-poset, a € D, m : D — (0,1) be a D-additive state,
x:J — D be an observable, F,G : R — (0, 1) be distribution functions

F(t) = m(z((—00,1)))

and
G(t) = m(a* z((—o0,t))).
Then there exists function f: R — R, such that

[ fdhr =m(ax*z((—o0,1))).

(7007t)

Proof. We know, that
)\0(<U, U)) < AF(<U'> U))
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for every u,v € R, u < v. Therefore A\g(B) < Ap(B) for any B € o(J). Assume, that
Ar(B) = 0, then there holds

0 <m(axz(B)) = Aa(B) < Ar(B) =0,
and according to Radon-Nikodym theorem there exists function f such that

Aa(B) = [ fdAr,
B

for every B € o(J). i

Definition 7 Let D be a Kdpka D-poset, a € D, m : D — (0,1) be a D-additive state,
x:J —> D be an observable. Then the conditional probability p(alz) : R — R, is a Borel
measurable function (i.e. B € J = f~Y(B) € o(J) such that

f fd/\F zm(a*x(—oo,t)),

(_Oovt)

foranyt € R.

4 Basic properties of a conditional probability

Theorem 2 Let p(a|z) be a version of conditional probability, then there almost everywhere
holds

i) p(0z) =0, p(l]x) =1,
e 1) 0 <plalr)<1,a€D
o i) if a, / a = p(a,|r) — p(alz).
Proof. For every B € J,
J p(0]z)dAr = m(0 * 2(B)) = m(0) = 0.
B
Now let p(1|z) = 1, then
[ p(L|z)d\p = m(1 x2(B)) = m(x(B)) = [ ld\r = 1.
B R
We prove the second property
0=m(0) = m(axz(0)) <m(axz(B)) = [plalz)d\r < [ plalz)d\p =m(1) = 1.
B R

Consider the sets Agy, Ay, where

Ao = {t € R;p(alz) <0},
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Ay ={t € R;p(alz) > 1},
then measure A\ of the sets Ay, A; is equal 0. For example, let Ap(Ap) > 0, then
[ plalz)dAp < [ 0d\p =0,
Ao Al

what is contradiction. And finally, third property, let a,, /* a then
m(axx(B)) / m(a*z(B)).
Therefore

S limsoop(an|2)dNp = limy,oop(an|z)dAp = limy,_,cm(a, * ©(B)) = m(a * 2(B)) =
[ plalz)dXp.
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