Ant Colony Optimization Approach to Tokens’
Movement within Generalized Nets
Vassia Atanassova! and Krassimir Atanassov?

! Institute of Information Technologies - Bulgarian Academy of Sciences
“Acad. G. Bonchev” Str., Block 2, Sofia 1113, Bulgaria
e-mail: vassia.atanassova@Qgmail.com
2 Centre of Biomedical Engineering - Bulgarian Academy of Sciences
“Acad. G. Bonchev” Str., Block 105, Sofia 1113, Bulgaria
e-mail: krat@bas.bg

Abstract: This work proposes a novel approach to combining the concepts of Ant
Colony Optimization and Generalized Nets. It discusses the possibility for optimiza-
tion of the tokens’ movement throughout the net following the idea behind the Ant
Colony algorithm.

Keywords: Ant colony optimization, Generalized net, Modelling

1 Introduction

Generalized Nets (GNs, see [1, 2]) is a concept extending the concept of Petri nets
and the rest of its modifications. One of the aspects of generalization is the fact that
the GN transitions possess an index matrix of predicates, determining the conditions
for tokens’ transfer from any input place of the transition to any output place. On
the other hand, the tokens enter the GN with their initial characteristics and during
their transfer from the input to the output places of the transition, they are assigned
new characteristics by means of special characteristic functions.

GNs have been applied to modelling of processes in the field of artificial intelli-
gence (expert systems, neural networks, pattern recognition, machine learning, etc.),
and in particular to metaheuristic methods for solving of optimizational problems
like the transportational problem, the travelling salesman problem, the knapsack
problem. An important venue of application of GN is the area of Ant Colony Opti-
mization (ACO, see [4, 5, 7]). So far, GN have been used as a method for description
of the ACO procedures.

The present article for the first time adopts the opposite approach: it discusses
the possibility for optimization of the GN tokens’ movement, using ACO algorithms.

2 Short remarks on GN theory

Broadly speaking, the GN is a bipartite directed graph consisting of a set of vertices
called transitions and another set of vertices called places. Both of them reflect the
static nature, or the infrastructure, of the modeled process, while its dynamic nature
is represented by a set of tokens initialized with certain starting characteristic which
move from the input to the output places of the model having their characteristics

changed. In other words, the tokens are instances of the modeled process, or individ-
uals, who keep track of their history. The tokens, their characteristic functions and
the conditions for transfer (as coded in index matrices of the transitions’ predicates)
reflect the logic of the modeled process.

The formal definition of the GN requires firstly the definition of the net’s building
block, namely the transition.

TR = (Pin, Pour, time, dur, IMp, I Mc,bool)

where

Pry is the finite nonempty set of the input places (obligatory).
Poyr is the finite nonempty set of the output places (obligatory).
time is the current time of the transition’s activation (optional).

dur is the current duration of the transition’s active state (optional).

IMp is the index matrix of predicates, determining the conditions for tokens’
transfer through the transition (obligatory).

IM¢ is the matrix, determining the number of tokens that may transfer from
the i-th input to the j-th output of the transition (optional).

bool is the Boolean type of the transition (optional).

On this basis, the formal definition of the GN is given, comprising of four sets
of components demonstrating respectively the static, dynamic, temporal nature of
the net and its memory:

GN = ((TRS,mrr,7p,¢, f,0acT,0DUR),
(TKN, 71N, 0TKN),

(T,t°,t%),

(

Xinir, XNEW, 1))

Static components of the net

TRS - set of transitions (obligatory);

mrr - function, giving the priorities of the transitions (optional);
7p - function, giving the priorities of the places (optional);

¢ - function, giving the capacities of the places (optional);

f - function that evaluates the degree of the predicates in IMP (it may be
restricted to the {false,true}-set, or in the [0;1] interval or in the multiset
[0;1] x [0;1] (optional);
0 acr - function, giving the next time moment when a given transition would
get activated; the value is calculated only when the transition has stopped
being active (optional);

Opur - function, giving the duration of the active state (optional).

Dynamic components of the net

e TKN - set of tokens (obligatory);

e Tri N - function, giving the tokens’ priorities (optional);

e Orin - function, giving the time moment when a given token will enter the
net (optional).

Temporal components of the model, defined according to a global time scale

e T - the moment of time when the net would start functioning (optional);

e t° - the elementary incremental step of the time scale (optional);

e t* - the total duration of net’s functioning (optional).

Characteristic components (memory) of the net

e X;niT - the set of initial characteristics that tokens acquire on entering the
net (obligatory);

e Xnygw - the characteristic function, which assigns new characteristics of the
tokens on their transferring via given transition (obligatory);

e n - function, giving the maximal number of characteristics for storing in a
token’s memory (optional):

o n =0 - the token stores no characteristics in its memory;

n =1 - the token stores only its current characteristic;

n = k - the token stores only the last k acquires characteristics;

n = oo - all token’s characteristics are stored in the memory.

o O O

Different operations, relations and operators are defined over the transitions of
the GNs and over the same nets. A variety of different types of GN-extensions
are defined and each of them is proved [1, 2] to be a conservative extension of the
ordinary GNs.

Now, we will give the general algorithm for tokens transfer in the frames of a
transition at time moment t; = TIM E (the current GN time-moment), as described
in [2]. In the following section we will present our idea for modifying some of its
steps, which is inspired by the ACO.

(A01) Sort the input and output places of the transitions by their priorities. The
tokens from a given input place are divided into two groups. The first one contains
those tokens that can be transferred to the transition output, the second contains
the rest (the motivation for this will be clear from the next steps of the algorithm).
Let the two parts be denoted by “P;(1)” and “Py(l)”, respectively, where [is the
corresponding place.

(A02) Sort the tokens from group P; of the input places (following the order
from A01) by their priorities. Let the index matrix R correspond to the index matrix
IMp. Thus, the (u,v)-th element of R is

1, if the (u,v)-th predicate r,, is true
Ry, =14 0, if the (u,v)-th predicate r, , is false or if the value is
determined by A03.

(A03) Assign a value 0 to all elements of R for which either

(a) the input place which corresponds to the respective predicate is empty (the
part P; is empty); or

(b) the output place which corresponds to the respective predicate is full; or

(c) the current capacity of the arc between the corresponding input and output
places is 0.

(A04) Calculate the values of the other elements of IMp and assign the obtained
values to the elements of R.

(A05) Calculate the values of the characteristic functions related to the corre-
sponding output places in which tokens will enter. Assign these characteristics to
the entering tokens.

(A06) Perform the following for each input place by the order of input place
priorities:

a) select the tokens with the highest priority in this input place;

b) transfer the selected tokens to all output places, for which the corresponding
predicate enables this (the tokens go to group P» of the output places).

(A07) Transfer the tokens with the highest priority, for which all calculated
values of the predicates are equal to “false” to the group P, of the corresponding
places. In this group, also transfer all tokens that cannot be transferred to the
corresponding output places because these places have already been filled with tokens
from other places with higher priorities.

(A08) Add t° to the current time, i.e., TIME := TIME +t°.

(A09) Check whether the value of the current time is less than t; + t2 (the
time-components of the considered transition).

(A10) If the answer to the question in A09 is “yes”, go to A02 (to update the
tokens’ order in the places).

(A11) If the answer to the question in A09 is “no”, terminate the current func-
tioning of the transition.

3 Main results

Up to now, GNs have been used for modelling, simulation, in certain cases manage-
ment, optimization or machine learning of real processes. For example, there has
been developed a GN model that makes decisions of the structure of a neural net-
work that solves particular problems with predefined accuracy of the solution and
duration of functioning [3]. However, as of today, no GN has been constructed in
a way to optimize models that take place inside of it. An idea of such a GN is the
Self-Modifying GN, but up to now no such net has been constructed and published.
Now, using ideas from the ACO algorithm we will initiate the first step towards
researching the possibility for construction of a particular GN that is capable of
taking decisions for changes in some of its own parameters.

In other words, the basic idea of this work is to combine the notions of GNs
and ACO in the opposite way of those utilized so far. As of today, the concept
of GNs was used to describe different variants of the ACO algorithm [6]. Here we

follow the reverse approach, applying the principle of ants’ movement to the tokens’
movement throughout the net. To do so, we have to pay attention to the following
considerations and interpretations of the elements of the ACO algorithm in terms
of GNs.
e The ACO algorithm can be reduced to finding optimal paths through graphs.
Hence, here we will utilize the fact that the GN has a graphic structure that
may be interpreted as a graph.

e The artificial ants are interpreted as the tokens in the GN.

e The pheromone trails are used by the artificial ants in the ACO algorithm as
communication medium: once the agents have found a solution they depose
these traces, i.e. communicate their discovery with the agents-to-come. In
terms of GNs, this information shall be given the form of a list of the net’s
places that have been visited.

The changes in the pheromone’s intensity (increase due multiple ants using the
track, or decrease due to evaporation) are modeled by changes in the characteristics
of some appropriately chosen tokens. These changes will be an object of discussion
in a next authors’ research.

Let us have a GN that models a concrete process, of which we know:

e the separate stages as represented by the net’s transitions,
e the carriers of dynamic behaviour, as represented by individual tokens, and
e the moments of the tokens’ entering the GN.

If we possess all of this information about the process, we will be capable of
constructing an adequate GN model of this process, while if a part of this information
is missing, our GN model will not be complete but partial. Below, we will discuss
how we may approach to replacing some of the missing data. We will show how we
can generate appropriate values of some of the model’s parameters, which will be
derived by the modeled process itself, making the assumption that it functions in
an optimal way.

For instance, one case of incomplete information of the modeled process is to as-
sume that in the real process we miss the data about the durations of the transitions
from one state to another, as well as the durations of the separate states. Another
possible situation (when we happen to have more information) is if we know the
durations of the separate sub-processes, but we do not know what characteristics
we may assign to the net’s tokens that describe the dynamics of the process. It
is an even more interesting case when we possess part of this information, as well.
For each of these three examples we may design a GN that reflects the relations
between the separate parts of the modeled process. It is a priori clear that at least
this knowledge ought to be in being.

The present article will deal only with the first of the so described scenarios.

Let us take a GN with 1 or more input places and 1 or more output places. Let
us make the following assumptions:

e On each step every transition of the net is fired (gets activated) and its active
state continues 1 time unit.

e All tokens are allowed to split.

e The tokens’ memory is unlimited, i.e. all tokens may store an indefinite number
of characteristics.

e FEach token have the initial characteristic of the moment of time when it enters
the GN.

In order to describe the first example we shall assume that the capacities of
the places are equal to infinity. In this case, every token transfer from the input
place to each of the output places of the respective transition. It is sufficient in
this case to have exactly one token entering each input place, because otherwise the
next-to-come will repeat the exact ways of splitting and the routes of the preceding
tokens.

In each place, the tokens obtain as a new characteristic the place’s identifier (the
current place’s identifier is added to the list of identifiers of all previous, already
attended, places in the net).

The so-described GN precisely copycats the idea of an ACO procedure with a
finite number of ants, each of which is here represented by a GN token. The token,
which starts from the i-th input place and is the first to reach the j-th output place
of the net, will possess as characteristics the shortest route between both of these
places.

When describing the second example, we will have to assume that the capacities
of the places are finite numbers, in particular 1. In this case, we are able to take
into account the eventual instances of route clogging, and for this reason this case
is more interesting than the first one. Now, we can have a new token entering each
input place only when the previous token had already left the place.

In each place the tokens obtain as a current characteristic the place’s identifier
as well as the moment of entering. In the end, the final token characteristic will also
include the calculated total time of token’s movement throughout the net.

It is appropriate to have the process of tracking the tokens’ movement described
in the GN itself, i.e. to have the net self-controlling. For this purpose, we add to the
given GN a new transition 7" (see Fig. 1) with only one place P that serves both for
input and output place. Only one token « loops in the transition. The transitions
T, the place P and the token « are assigned the minimal possible priorities among
their likes. In this way, on each step of the net’s functioning we provide for the
token « to make its move after all other tokens in the net, and allow it to obtain as
a current characteristic the current distribution of tokens per places.

T
generalized P

net «

Fig. 1.

After the end of the net’s functioning, we will determine the shortest route with
respect to either time, or length by:

e tracing the routes of the individual tokens,
e determining the lengths of the paths, and

e rendering account of the time spent by the tokens in the net (Case 2).

Behind the so constructed GN construction, another important aspect can be
perceived, namely the criteria of intended optimization. Our experience with the
classical ACO has led us to the understanding that it is the time of taking the
route and the length of the path in the GN, as generated by the GN structure, that
are most important criteria for optimization. Now it is clear that this statement is
valid for the first of the discussed cases, but it is invalid in the second case, when
the duration and the length of the path may be fully independent criteria and the
optimization may be conducted per both of them, in parallel.

On the basis of the accumulated information, we may built a simulation model
in which the tokens transfer from input to output places with probabilities corre-
sponding to the profits laid on the respective routes.

Now we will discuss the possible applications of the so constructed GN.

As we already mentioned, there is a point in using it only in cases when we
possess incomplete information of the modeled process. In the first case discussed
above, we may complicate the research by determining the lengths of the paths from
the i-th place, which is not an input place of the GN, up to the the j-th output
place, and then we can apply the following procedure:

1. For each (say, t-th) transition, we determine the number of the output places,
via which a token that has started from the i-th place which is an input place for
this transition, will reach the j-th place which is output place for the whole net. Let
this transition possess s; output places and let their route lengths be, respectively,

pi,ph, ..., pt,. Then we determine the number a; = Y27 é.

2. We determine the numbers of, = % (1 <k <sy).

3. The predicate of the index matrix of transition ¢ that corresponds to the fixed
i-th place and the k-th output place be P, = “r € [ZZ;% p%, ﬁzl p% 7, where r
is a random number in the [0, 1] interval. ' '

Following this procedure, the token from the i-th place will advance to an output
place with a probability that corresponds to the length of the route to the j-th output
place of the net. Moreover, the shorter the path, the larger the probability for the
token to move towards this very place. This ensures the optimal movement of the
nets around the net.

In contrast with the first case, in the second case we assume that tokens enter
the net in every time moment. Now, for ¢-th transition and for its k-th output
place (1 < k < s;) we will obtain that the tokens (whose number is ¢), which
have passed through it, will arrive in the net’s j-th output place for time periods of

};1, 2,72, - Q',;qk. These time periods can be different, because in the second case

the tokens can spend time waiting in some places. All of these tokens will travel a

path of lenght p',; (as in the first case). Now, we can determine the average duration

for tokens’ tranfser: Dj = éZ?ﬁ | Q.- By analogy with the first case, we can

determine the numbers] = Y ﬁz’ that we can use instead of af, constructed

above.

4 Conclusion

This paper contains the general idea and the first step towards optimization of the
GN functioning by the ant colony optimization algorithm. A next authors’ research
will be especially devoted to the formal description and exploration of the rest two
cases, as well as other situations that may occur in the GNs. It must be noted
that using the above discussed ideas a self-organizing GN can be constructed, which
makes references to one of the open problems in artificial intelligence, namely the
problem with self-reference and self-modifying algorithms (see [8, 9]).

5 Acknowledgments

This work has been supported by the Bulgarian National Science Fund under grants
No. DID-02-29 “Modelling Processes with Fixed Development Rules” and DTK-02-
44 “Effective Monte Carlo Methods for Large-Scale Scientific Problems”.

References

[1] Atanassov K., Generalized Nets, World Scientific, Singapore, New Jersey, London, 1991.

[2] Atanassov, K., On Generalized Nets Theory. Prof. M. Drinov Publishing House, Sofia,
2007.

[3] Atanassov, K., Sotirov S., Optimization of a Neural Network of Self-organizing Maps
Type with Time-Limits by a Generalized Net. Advanced Studies on Contemporary Math-
ematics, Vol. 13, 2006, No. 2, 213-220.

[4] Dorigo, M., Gambardella, L.M., Ant Colony system: A Cooperative Learning Approach
to the traveling salesman problem, IEEE Transactions on Evolutionary Computation,
Vol. 1, 1997, 53-66.

[5] Dorigo, M., Stutzle, T., Ant Colony Optimization, MIT Press, 2004.

[6] Fidanova, S., Atanassov, K., Generalized Net Models of the Process of Ant Colony
Optimization. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, Vol. 7, 2008,
108-114.

[7] Fidanova, S., Marinov, P., Intuitionistic fuzzy estimation of the ant methodology, Int.
J. of Cybernetics and Information Technology, Vol. 9, No. 2, 2009, 79-88.

[8] Marshall, J., Hofstadter, D., Beyond Copycat: Incorporating Self~-Watching into a Com-
puter Model of High-Level Perception and Analogy-Making, In M. Gasser (ed.), Online
Proceedings of the 1996 Midwest Artificial Intelligence and Cognitive Science Confer-
ence, Indiana University, Bloomington.

[9] Turney, P., http://apperceptual.wordpress.com/2007/12/18/open-problems//.

