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Abstract: The artificial neural networks (ANN) are a tool that can be used for object 

recognition and identification. However, there are certain limits when we may use ANN, and 

the number of the neurons is one of the major parameters during the implementation of the 

ANN. On the other hand, the bigger number of neurons slows down the learning process. In 

our paper, we use a method for removing the number of the neurons without reducing the error 

between the target value and the real value obtained at the output of the ANN’s output. The 

method uses the recently proposed approach of InterCriteria Analysis, based on index matrices 

and intuitionistic fuzzy sets, which aims to detect possible correlations between pairs of 

criteria. In this paper we use the data from 11 criteria of crude oil measurements. 
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1 Introduction 

The use of neural networks is often hampered by the large number of resources which are 

needed. When using a large number of parameters as data at the input of the NN, the question 

of reducing part of the data arises. Upon their removal the large number of inputs of the NN is 

reduced as well as the number of weight coefficients in it. In a previous paper [18] we used the 

data of 11 criteria of crude oil measurements. In this case we use 11 parameters of biodiesel 

fuels.  

For the reduction of the inputs of the NN we will use InterCriteria Analysis to find 

dependencies of all pairs of parameters applied to the input of the NN 
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2 Presentation of the InterCriteria Analysis  

The presented method, titled InterCriteria Analysis (ICrA) [12] is based on two fundamental 

concepts: intuitionistic fuzzy sets and index matrices. 

Intuitionistic fuzzy sets defined by Atanassov [3–6] represent an extension of the concept 

of fuzzy sets, as defined by Zadeh [15], exhibiting function µA(x) defining the membership of 

an element x to the set A, evaluated in the interval [0; 1]. The difference between fuzzy sets and 

intuitionistic fuzzy sets (IFSs) is in the presence of a second function νA(x) defining the non-

membership of the element x to the set A, where µA(x) ∈ [0; 1], νA(x) ∈ [0; 1], under the 

condition of  (µA(x) + νA(x)) ∈ [0; 1]. The IFS itself is formally denoted by: 

A = {〈x, µA(x), νA(x)〉 | x ∈ E}. 

Comparison between elements of any two IFSs, say A and B, involves pairwise 

comparisons between their respective elements’ degrees of membership and non-membership 

to both sets. 

The second concept on which the proposed method relies is the concept of index matrix, a 

matrix which features two index sets. The theory behind the index matrices is described in [1]. 

Here we will start with the index matrix M with index sets with m rows {O1, …, Om} and  n 

columns {C1, …, Cn}, where for every p, q  (1 ≤ p ≤ m, 1 ≤ q ≤ n), Op in an evaluated object, 

Cq is a evaluation criterion, and eOpCq is the evaluation of the p-th object against the q-th 

criterion, defined as a real number or another object that is comparable according to relation R 

with all the rest elements of the index matrix M. 
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From the requirement for comparability above, it follows that for each i, j, k it holds the 

relation R(aOiCk, aOjCk). The relation R has dual relation R , which is true in the cases when 

relation R is false, and vice versa. For the needs of our decision making method, pairwise 

comparisons between every two different criteria are made along all evaluated objects. During 

the comparison, it is maintained one counter of the number of times when the relation R holds, 

and another counter for the dual relation.  

Let 
,k lS

µ  be the number of cases in which the relations R(eOiCk, eOjCk) and R(eOi Cl, eOjCl ) are 

simultaneously satisfied. Let also 
,k lS

ν  be the number of cases in which the relations R(eOiCk , eOjCk) 

and its dual R (eOiCl, eOjCl) are simultaneously satisfied. As the total number of pairwise comp-

arisons between the object is m(m– 1)/2, it is seen that there hold the inequalities: 
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For every k, l, such that 1 ≤ k ≤ l ≤ m, and for n ≥ 2 two numbers are defined: 

, ,

, ,2 , 2
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. 

The pair constructed from these two numbers plays the role of the intuitionistic fuzzy 

evaluation of the relations that can be established between any two criteria Ck and Cl. In this 

way the index matrix M that relates evaluated objects with evaluating criteria can be 

transformed to another index matrix M* that gives the relations among the criteria: 
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From practical considerations, it has been more flexible to work with two index matrices 

M
µ
 and M

ν
, rather than with the index matrix M * of IF pairs.  

The final step of the algorithm is to determine the degrees of correlation between the 

criteria, depending on the user’s choice of µ  and ν. We call these correlations between the 

criteria: ‘positive consonance’, ‘negative consonance’ or ‘dissonance’. Let α, β ∈ [0; 1] be the 

threshold values, against which we compare the values of µCk  ,Cl  and νCk ,Cl. We call that 

criteria Ck and Cl are in (α, β)-positive consonance, if µCk ,Cl > α and νCk ,Cl < β; (α, β)-negative 

consonance, if µCk ,Cl < β and νCk ,Cl > α; (α, β)-dissonance, otherwise. 

Obviously, the larger α and/or the smaller β, the less number of criteria may be 

simultaneously connected with the relation of (α, β)-positive consonance. For practical 

purposes, it carries the most information when either the positive or the negative consonance is 

as large as possible, while the cases of dissonance are less informative and are skipped. 

3 Artificial neural networks 

The artificial neural networks [9, 10] are one of the tools that can be used for object recognition 

and identification. In the first step it have to be learned and after that we can use for the 

recognitions and for predictions of the properties of the materials. Fig. 1 shows in abbreviated 

notation of a classic two-layered neural network. 

 
Figure 1. Abbreviated notation of a classical Multi-Layer Perceptron 

In the two-layered neural networks, one layer’s outputs become inputs for the next one.  
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• f
1

 is the transfer function of the 1-st layer; 

• f
2

 is the transfer function of the 2-nd layer. 

The neuron in the first layer receives outside inputs р. The neurons’ outputs from the last layer 

determine the neural network’s outputs а. Since it belongs to the learning with teacher methods, to 

the algorithm are submitted training set (an input value and a target – on the network’s output) {p1, 

t1}, {p2 , t2}, ..., {pQ , tQ}, where Q ∈ (1, ..., n), n – numbers of learning couple, where рQ  is the 

input value (on the network input), and tQ  is the output’s value corresponding to the aim. Every 

network’s input is preliminary established and constant, and the output have to corresponding to 

the aim. The difference between the input values and the aim is the error e = t – a. The “back 

propagation” algorithm [13] uses mean-quarter error: 2)(ˆ atF −=  = e
2
. 

In learning the neural network, the algorithm recalculates network’s parameters (W and b) 

so to achieve mean-square error. 

The “back propagation” algorithm for i-neuron, for k + 1 iteration use equations: 
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where  

• α - learning rate for neural network; 

• 
m

iw

F̂

∂

∂ - relation between changes of square error and changes of the weights; 

• 
m

ib

F̂

∂

∂ - relation between changes of square error and changes of the biases. 

The overfitting [8] appears in different situations, which effect over trained parameters and 

make worsen output results as shown in Fig. 2.  

There are different methods that can reduce the overfitting – “Early Stopping” and 

“Regularization”. Here we will use Early Stopping [8]. 

When the multilayer neural network is trained, usually the available data has to be divided 

into three subsets. The first subset is named “Training set”, is used for computing the gradient 

and updating the network weighs and biases. The second subset is named “Validation set”. The 

validation error normally decreases during the initial phase of training, as does the training set 

error. Sometimes, when the network begins to overfit the data, the error of the validation set 

typically begins to rise. When the validation error increases for a specified number of iterations, 

the training stops, and the weights and biases at the minimum of the validation error are returned 

[10]. The last subset is named “test set”. The sum of these three sets has to be 100% of the 

learning couples. 

When the validation error eν increases (the amendment deν have positive value) the neural 

network learning stops when deν > 0. 

The classic condition for the learned network is when e
2
 < Emax, where Emax is the 

maximum square error. 

For the preparing we use MATLAB and neural network structure 11:25:1 (11 inputs, 25 

neurons in hidden layer and one output (Fig. 3). The numbers of the weight coefficients are 

11 × 25 = 225. The method is focused to removing part of the number of neurons (and weigh 

coefficients) and dues not reduce the average deviation of the samples, used for the learning 

testing and validating the neural network. 
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Figure 2: The learning process Figure 3: The neural network structure 

4 Testing  

At the input of the neural network we put the experimental data for obtaining type number, 

based on certain correlations with the rest of the criteria of biodiesel fuels measurements. We 

work with data from 91 biodiesel fuels, measured against 11 criteria (Fatty acid methyl esters): 

 – palmitate (C16:0), stearate (C18:0), oleate (C18:1), linoleate (C18:2), linolenate (C18:3)– 

from Sigma-Aldrich. Reagents of recognized analytical grade were used.  

We use the same data as input data for the InterCriteria Analysis method, applied to the 

whole 91 × 11 table, and a software application that implements the ICrA algorithm returns the 

results in the form of two index matrices in Tables 1 and 2, containing the membership and the 

non-membership parts of the IF correlations detected between each pair of criteria (121 pairs).  
 

ρ C16:0 C18:0 C18:1 C18:2 C18:3 SAT MUNS PUNS FDU CN IN 

C16:0 1.000 0.614 0.352 0.504 0.374 0.879 0.353 0.503 0.506 0.606 0.505 

C18:0 0.614 1.000 0.314 0.608 0.354 0.656 0.311 0.625 0.623 0.424 0.624 

C18:1 0.352 0.314 1.000 0.204 0.593 0.368 0.988 0.187 0.208 0.717 0.208 

C18:2 0.504 0.608 0.204 1.000 0.287 0.470 0.201 0.938 0.854 0.206 0.853 

C18:3 0.374 0.354 0.593 0.287 1.000 0.379 0.596 0.345 0.420 0.602 0.427 

SAT 0.879 0.656 0.368 0.470 0.379 1.000 0.371 0.479 0.475 0.609 0.477 

MUNS 0.353 0.311 0.988 0.201 0.596 0.371 1.000 0.184 0.206 0.719 0.207 

PUNS 0.503 0.625 0.187 0.938 0.345 0.479 0.184 1.000 0.905 0.203 0.905 

FDU 0.506 0.623 0.208 0.854 0.420 0.475 0.206 0.905 1.000 0.244 0.990 

CN 0.606 0.424 0.717 0.206 0.602 0.609 0.719 0.203 0.244 1.000 0.245 

IN 0.505 0.624 0.208 0.853 0.427 0.477 0.207 0.905 0.990 0.245 1.000 

 Table 1. Membership part of the IF pairs, giving the InterCriteria correlations 
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σ C16:0 C18:0 C18:1 C18:2 C18:3 SAT MUNS PUNS FDU CN IN 

C16:0 0.000 0.333 0.621 0.470 0.577 0.093 0.619 0.471 0.469 0.372 0.473 

C18:0 0.333 0.000 0.646 0.353 0.586 0.301 0.648 0.335 0.339 0.540 0.340 

C18:1 0.621 0.646 0.000 0.787 0.373 0.619 0.003 0.804 0.783 0.277 0.786 

C18:2 0.470 0.353 0.787 0.000 0.680 0.518 0.789 0.055 0.139 0.790 0.144 

C18:3 0.577 0.586 0.373 0.680 0.000 0.585 0.370 0.622 0.548 0.369 0.544 

SAT 0.093 0.301 0.619 0.518 0.585 0.000 0.616 0.509 0.514 0.383 0.515 

MUNS 0.619 0.648 0.003 0.789 0.370 0.616 0.000 0.807 0.785 0.275 0.788 

PUNS 0.471 0.335 0.804 0.055 0.622 0.509 0.807 0.000 0.087 0.793 0.091 

FDU 0.469 0.339 0.783 0.139 0.548 0.514 0.785 0.087 0.000 0.753 0.007 

CN 0.372 0.540 0.277 0.790 0.369 0.383 0.275 0.793 0.753 0.000 0.755 

IN 0.473 0.340 0.786 0.144 0.544 0.515 0.788 0.091 0.007 0.755 0.000 

Table 2. Non-membership part of the IF pairs, giving the InterCriteria correlations 

The correlations with  highest µ are shown on the section A on Figure 4 and listed below: 

• C16:0 – SAT: 〈0,879386; 0,0925439〉 

• C18:1 – MUNS: 〈0,988158; 0,00263158〉 

• C18:2 – PUNS: 〈0,937939; 0,0546053〉 

• C18:2 – FDU: 〈0,854386; 0,138816〉 

• C18:2 – IN: 〈0,852632; 0,14364〉 

• PUNS – FDU: 〈0,905482; 0,0872807〉 

• PUNS – IN: 〈0,905263; 0,0905702〉 

• FDU – IN: 〈0,990351; 0,00657895〉 

The correlations with the highest ν are shown in section B in Figure 4 and are listed below: 

• C18:1 – C18:2: 〈0,204386; 0,786623〉 

• C18:1 – PUNS: 〈0,187281; 0,803728〉 

• C18:1 –FDU: 〈0,207895; 0,783333〉 

• C18:1 – IN: 〈0,208114; 0,786184〉 

• C18:2 – MUNS: 〈0,201316; 0,789254〉 

• C18:2 – CN: 〈0,20614; 0,790132〉 

• MUNS – PUNS: 〈0,18443; 0,806579〉 

• MUNS – FDU: 〈0,20636; 0,784868〉 

• MUNS – IN: 〈0,206579; 0,787719〉 

• PUNS – CN: 〈0,203289; 0,792544〉 

• FDU – CN: 〈0,24364; 0,753289〉 

• CN – IN: 〈0,245395; 0,754605〉 
 

The other correlations are shown in section C. 

 

Figure 4. Intuitionistic fuzzy triangle 

The objective of the preparation of the two matrices is to remove one or more columns of 

parameters which are repetitive (with the corresponding index of the positive and negative 
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consonance). Testing is done as in the first step all the measurements of the 91 biodiesel fuels 

probes against the 11 criteria are analyzed in order to make a comparison of the obtained results 

thereafter. For this comparison to be possible, the predefined weight coefficients and offsets that 

are normally random values between –1 and 1, are now established and are the same in all 

studies of the various attempts. 

For the learning process, we set the following parameters: Performance (MSE) = 0.00001; 

Validation check = 25. The input vector is divided into three different parts: Training (75/100); 

Validation (10/100) and Testing (15/100). For tagret we use the type number biodiesel fuels. The 

number of the biodiesel fuels is 6 (sunflower, rapeseed oil, palm and there mixture), 

At the first step of the testing process, we use all the 11 criteria listed above, in order to train 

the neural network. After the training process all input values are simulated by the neural 

network. The average deviation of all 91 samples is 0.0488. 

At the second step of the testing process, we make a fork and try independently to remove one 

of the columns, and experiment with data from the remaining ten columns. We compare the results 

in the next section ‘Discussion’. First, we make a reduction of column 7 (with maximal intercriteria 

IF pair (0,988158; 0,00263158)) and put the data at the input of the neural network.  After the 

training process all input values are simulated. The average deviation of all 91 samples is 0.05586. 

At the third step, we alternatively experiment with the reduction of a different column, 

column 3 (with maximal intercriteria IF pair (0,988158; 0,00263158)), and put the data at the input 

of the neural network. After the training process all input values are simulated. The average 

deviation of all samples is 0.02578. 

At the next step, we alternatively experiment with the reduction of a different column, 

column 4 (with maximal intercriteria IF pair (0,937939; 0,0546053)), and put the data at the input 

of the neural network. After the training process all input values are simulated. The average 

deviation of all samples is 0.03952. 

Now, at this step, we proceed with providing the neural network with 9 inputs, reducing both 

columns 4 and 7 simultaneously; their maximal intercriteria IF pair given below. The average 

deviation of all 91 samples is 0.0477. At the next step, we reduce the number of inputs with one 

more, i.e. we put at the input of the neural network experimental data from 8 inputs, with 

removed columns 3, 4, and 7; their maximal intercriteria IF pair is given below. The average 

deviation of all 91 samples is 0.07408. 

One interesting situation is when we use neural network experimental data from 8 inputs, 

with removed columns 3, 8, and 10, which maximal intercriteria IF pair is given below.  The 

average deviation of all 91 samples is 0.02978. 

Finally, at the this step, we experiment with providing the neural network with 7 inputs only. 

The reduced columns are 3, 4, 7 and 10; their maximal intercriteria IF pair are given below. The 

average deviation of all 91 samples is 0.04236. 

5 Discussion 

As we stated above, reducing the number of the input parameters of a classical neural network 

leads to a reduction of the weight matrices, resulting in implementation of the neural network 

in limited hardware and saving time and resources in training. For this purpose, we use the 

intuitionistic fuzzy sets-based approach of ICrA, which gives dependencies between the 
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criteria, and thus helps us reduce the number of the input parameters, yet keeping high enough 

level of precision.  

Table 3 below summarizes the most significant parameters of the process of testing the 

neural network with different numbers of inputs, gradually reducing the number in order to 

discover optimal results. These process parameters are the NN-specific parameters ‘Average 

deviation’ and ‘Number of the weight coefficients’, and the ICrA-specific parameters: maximal 

value for µ per column and respective value for ν, [7]. 

 

N: Number of inputs µ  and ν 
Average 

deviation 

Number of the 

weight 

coefficients 

1 11 inputs - 0,0488 275 

2 10 inputs without 

column 7 
C18:1 - MUNS: 〈0,988158; 0,00263158〉   0,05586 

 

250 

3 10 inputs without 

column 3 
C18:1 - MUNS: 〈0,988158; 0,00263158〉   0,02578 

 

250 

4 10 inputs without 

column 4 
C18:2 - PUNS: 〈0,937939; 0,0546053〉 0,03952 

 

250 

5 10 inputs without 

column 8 
C18:2 - PUNS: 〈0,937939; 0,0546053〉 0,04728 

 

250 

6 10 inputs without 

column 7 
MUNS - PUNS: 〈0,18443; 0,806579〉 0,03198 

 

250 

7 10 inputs without 

column 10 
C18:2 - CN: 〈0,20614; 0,790132〉 0,04248 

 

250 

8 9 inputs without 

column 4 and 7 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,0026315〉>   

0,0477 

 

225 

9 9 inputs without 

column 3 and 4 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,00263158〉   

0,07666 

 

225 

10 9 inputs without 

column 7 and 8 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,00263158〉   

0,07588 

 

225 

11 9 inputs without 

column 3 and 8 
C18:2 - PUNS: 〈0,937939; 0,0546053〉 

C18:1 - MUNS: 〈0,988158; 0,00263158〉   

0,05348 

 

225 

12 9 inputs without 

column 3 and 10 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,00263158〉  

C18:2 - CN: 〈0,20614; 0,790132〉  

0,0478 

 

225 

13 8 inputs without 

column 4, 7 and 10 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,00263158〉   

C18:2 - CN: 〈0,20614; 0,790132〉 

0,08106 

 

200 

14 8 inputs without 

column 3, 4 and 7 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,00263158〉  

C18:2 - CN: 〈0,20614; 0,790132〉 

0,07408 

 

200 

15 8 inputs without 

column 3, 8 and 10 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,00263158〉   

C18:2 - CN: 〈0,20614; 0,790132〉 

0,02978 

 

200 

16 7 inputs without 

column 3, 4, 7 and 10 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,00263158〉   

C18:2 - CN: 〈0,20614; 0,790132〉 

0,04236 

 

175 
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PUNS - CN: 〈0,203289; 0,792544〉 

17 7 inputs without 

column 3, 4, 8 and 10 
C18:2 - PUNS: 〈0,937939; 0,0546053〉, 

C18:1 - MUNS: 〈0,988158; 0,00263158〉   

C18:2 - CN: 〈0,20614; 0,790132〉 

PUNS - CN: 〈0,203289; 0,792544〉 

0,05632 

 

175 

Table 3. Table of comparison 

The average deviation in using 11 input vectors is 0.0488 with number of weight coef-

ficients 225. By reducing the number of the inputs, the number of weight coefficients is also 

decreased which theoretically is supposed to reduce the matching coefficient. In this case the 

removal of column 7 (and therefore one input is removed) causes further increase of average 

deviation to 0.05586 With maximal membership of the intercriteria IF pair (0,988158; 

0,00263158) for column 3 the additional information used for training the neural network is 

very little, and the total Average deviation is smaller. The use of 7 columns (excluding column 

8) leads to a result which is better than the previous one - 98.1609%. This shows that, while 

maintaining the number of weight coefficients and reducing the maximal membership in the 

intercriteria IF pair (0,988158; 0,00263158), the neural network receives an additional small 

amount of information which it uses for further learning. 

Best results (average deviation = 0.02978) are obtained by removing the 3 columns with 

the greatest membership components of the respective IF pairs. 

In this case, the effect of reducing the number of weight coefficients from 275 to 175 and 

the corresponding MSE is greater than the effect of the 3 columns. 

The worst results (average deviation = 0.0997) are obtained in the lowest number of 

columns – 6 of investigation. Although the number of weight coefficients here is the smallest, 

the information that is used for training the neural network is less informative. 

6 Conclusion 

The number of the neurons is one of the major parameters during the realization of the ANN. 

Here we use the integration of intuitionistic fuzzy InterCriteria Analysis method for reducing 

the number of input parameters of the classical neural network. This leads to a reduction of the 

weight matrices, and thus allows implementation of the neural network in limited hardware and 

saving time and resources in training. 

 A very important aspect of the testing of the neural network after reducing some of the data 

(respectively the number of inputs) is to obtain an acceptable correlation between the input and 

output values, as well as the average deviation (or match) of the result. Here we use the data 

from the [17] for the biodiesel fuels probes against the 11 criteria. 
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