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Abstract

In [2] a general probability theory has
been constructed for intuitionistic fuzzy
events ([1]) defined on any probability
space (Ω,S, P ). To any element A be-
longing to the family F of all intuitionis-
tic fuzzy events a compact interval P(A)
on the real line is assigned. In the pa-
per we consider a mapping P : F → J ,
where J is the family of all compact in-
tervals. Some properties of P are postu-
lated axiomatically. Then a representa-
tion theorem is proved stating that to
any mapping P satisfying the proper-
ties there exists a probability measure
P : S → [0, 1] such that P(A) can be
expressed by the help of P similarly as
it has been done in [2].

1 Introduction

Let (Ω,S, P ) be a probability space. By an intu-
itionistic fuzzy event (IFE) we understand a cou-
ple A = (µA, νA) of nonnegative, S-measurable
functions such that µA + νA ≤ 1. The num-
ber µA(x) represents the degree of membership,
the number νA(x) the degree of nonmember-
ship. Probability P(A) is defined as the interval
P(A) = [p[(A), p](A)], where

p[(A) =
∫

Ω
µAdP, p](A) = 1−

∫

Ω
νAdP. (1)

In [2] some properties of P has been proved, as
monotonicity, additivity, and continuity. In this
paper we shall prove another type of additivity

based on the Lukasiewicz connectives ([3]). In
Section 2 we introduce some characteristic pro-
perties of the mapping P and in Section 3 we
prove the corresponding representation theorem.

2 Characteristic properties of
probability

As in the classical case the properties character-
ising probability are additivity and continuity. In
this paper we shall use additivity based on the
Lukasiewicz connectives ⊕,¯. Recall that

x¯ y = (x + y − 1) ∨ 0

x⊕ y = (x + y) ∧ 1

for any x, y ∈ [0, 1]. For elements A = (µA, νA) ∈
F , B = (µB, νB) ∈ F we define

(µA, νA)¯ (µB, νB) = (µA ¯ µB, νA ⊕ νB)

(µA, νA)⊕ (µB, νB) = (µA ⊕ µB, νA ¯ νB).

Denote further 0 = (0,1), and consider probability
P defined by the formulas (1). Define the oper-
ation + on the family J of all compact intervals
by

[a, b] + [c, d] = [a + c, b + d]

Then we can prove the following proposition.

Proposition 1. If A¯B = O , then P(A⊕B) =
P(A) + P(B).

Proof. Put A = (µA, νA), B = (µB, νB). Then

(0, 1) = (µA ¯ µB, νA ⊕ νB) =

((µA + µB − 1) ∨ 0, (νA + νB) ∧ 1).



We have obtained

0 = (µA + µB − 1) ∨ 0,

1 = (νA + νB) ∧ 1,

hence
µA + µB ≤ 1, νA + νB ≥ 1. (2)

Now

A⊕B = (µA ⊕ µB, νA ¯ νB) =

= ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0)

= (µA + µB, νA + νB − 1).

Therefore

P(A⊕B) = [
∫

Ω
(µA+µB)dP, 1−

∫

Ω
((νA+νB)−1)dP ]

(3)

= [
∫

Ω
µAdP+

∫

Ω
µBdP, 1−

∫

Ω
νAdP+1−

∫

Ω
νBdP ].

On the other hand

P(A) + P(B) = [
∫

Ω
µAdP, 1−

∫

Ω
νAdP ] (4)

+[
∫

Ω
µBdP, 1−

∫

Ω
νBdP ]

= [
∫

Ω
µAdP+

∫

Ω
µBdP, 1−

∫

Ω
νAdP+1−

∫

Ω
νBdP ].

By (3) and (4) we obtain P(A ⊕ B) = P(A) +
P(B).

To formulate continuity consider a sequence
(An)∞n=1 of IFE and A ∈ F . Denote An =
(µAn , νAn), A = (µ, ν). We shall write An ↗ A, if

µAn(ω) ↗ µA(ω), νAn ↘ νA(ω)

for all ω ∈ Ω. If (In)∞n=1 is a sequence of compact
intervals, In = [an, bn], I = [a, b], then we write
In ↗ I, if an ↗ a, bn ↗ b. The following theorem
holds.

Proposition 2. If An ↗ A, then P(An) ↗
P(A).

Proof. [2], Prop. 5.

Of course, besides the continuity and our variant
of additivity there hold many further properties.

We shall need the following three ones. First, ev-
idently

P((1Ω, 0Ω)) = [
∫

Ω
1ΩdP, 1−

∫

Ω
0ΩdP ] = [1, 1] = {1}.

Secondly, if we denoteP(A) = [p[(A), p](A)], A =
(µ, ν), then

p[(A) =
∫

Ω
µdP

depends only on µ, and

p](A) = 1−
∫

Ω
νdp

depends only on ν. Thirdly, if A ∈ S, and we
denote I(A) = (χA, χA′), then

p[(I(A)) =
∫

Ω
χAdP = P (A),

p](I(A)) = 1−
∫

Ω
χA′dP = 1− P (A′) = P (A),

hence

p[(I(A)) = p](I(A)).

3 Representation theorem

Denote by F the set of all intuitionistic fuzzy
events with respect to a given measurable space
(Ω,S), where S is a σ-algebra of subsets of Ω. De-
note by J the set of all compact inervals on the
real line. If A ∈ S then we define I(A) ∈ F by
the formula I(A) = (χA, χA′). If P → J then we
write P((µ, ν)) = [p[(µ, ν), p](µ, ν)].

Theorem. Let P : F → J satisfy the following
properties:

P((1Ω, 0Ω)) = {1}; (i)

A,B ∈ F , A¯B = (0Ω, 1Ω) =⇒
P(A⊕B) = P(A) + P(B); (ii)

An ∈ F(n = 1, 2, ...), A ∈ F , An ↗ A =⇒
P(An) ↗ P(A); (iii)

(µ, ν), (µ, κ), (λ, ν) ∈ F =⇒
p[(µ, ν) = p[(µ, κ), p](µ, ν) = p](λ, ν); (iv)

∀a ∈ S : p[(I(A)) = p](I(A)). (v)



Then there exists a probability measure P : S →
[0, 1] such that

P((µ, ν)) = [
∫

Ω
µdP, 1−

∫

Ω
νdP ]

for any (µ, ν) ∈ F).

Proof. Define P : S → [0, 1] by the formula
P (A) = p[(I(A)) = p[((χA, χA′)). Evidently, by
(i)

P (Ω) = p[((χΩ, χΩ′)) = p[((1Ω, 0Ω)) = 1.

Let A,B ∈ S, A ∩B = ∅. We shall show that

I(A)¯ I(B) = (0Ω, 1Ω) (5)

Indeed

I(A)¯I(B) = (χA, χA′)¯(χB, χB′) = (χA¯χB, χA′⊕χB′)

= (χA∩B, χ(A∩B)′) = (0Ω, 1Ω).

Similarly

I(A)⊕ I(B) = I(A ∪B). (6)

Therefore

[p[(I(A ∪B)), p](I(A ∪B))] = P(I(A ∪B))

= P(I(A)⊕ I(B)) = P(I(A)) + P(I(B))

= [p[(I(A)), p](I(A))] + [p[(I(B)), p](IB))]

= [p[(I(A)) + p[(I(B)), p](I(A)) + p](I(B))],

hence

P (A ∪B) = p[(I(A ∪B)) = p[(I(A)) + p[(I(B))

= P (A) + P (B).

If An ∈ S, A ∈ S, An ↗ A, then P(An) ↗ P(A),
and hence

P (An) = p[(An) ↗ p[(A) = P (A).

We have proved that P is a probability measure.
Next step is the proof of the equality

p[((µ, 1− µ)) =
∫

Ω
µdP = p](µ, 1− µ)), (7)

for any S-measurable µ, µ : Ω → [0, 1]. First let
µ = 1

nχA, A ∈ S. Put M = (µ, 1− µ). Then

P(I(A)) = P(M ⊕M ⊕ ...⊕M)

= P(M) + P(M) + ... + P(M),

[p[(I(A)), p](I(A))] = nP(M) = n[p[(M), p](M)],

hence

p[(M) =
1
n

p[(I(A)) =
1
n

P (A) =
∫

Ω

1
n

χAdP.

We see that (7) holds for µ = 1
nχA. Using again

additivity

P((
m

n
χA, 1− m

n
χA)) =

= P((
1
n

χA, 1− 1
n

χA)) + ... +P((
1
n

χA, 1− 1
n

χA))

=
∫

Ω

1
n

χAdP + ... +
∫

Ω

1
n

χAdP

=
∫

Ω

m

n
χAdP,

hence (7) holds for µ = m
n χA. Continuity (iii) im-

plies (7) for µ = αχA, α ∈ R. To prove (7) for any
simple S-measurable function µ =

∑n
i=1 αiχAi(Ai

disjoint, αi ∈ [0, 1]) we use again additivity:

P((
n∑

i=1

αiχAi , 1−
n∑

i=1

αiχAi))

=
n∑

i=1

P((αiχAi , 1− αiχAi)),

p[(
n∑

i=1

αiχAi , 1−
n∑

i=1

αiχAi)

=
n∑

i=1

∫

Ω
αiχAidP =

∫

Ω
(

n∑

i=1

αiχAi)dP

Let (µ, 1 − µ) ∈ F . Choose µn simple such that
0 ≤ µn ↗ µ. Then (µn, 1 − µn) ↗ (µ, 1 − µ),
hence by (iii)

P((µn, 1− µn)) ↗ P((µ, 1− µ)),

p[(µ, 1− µ) = limn→∞p[(µn, 1− µn)

= limn→∞
∫

Ω
µndP =

∫

Ω
µdP,

p](µ, 1− µ) = limn→∞p](µn, 1− µn)

= limn→∞
∫

Ω
µndP =

∫

Ω
µdP.



We have proved (7) for any S-measurable µ, 0 ≤
µ ≤ 1. By (iv) we obtain

p[(µ, ν) = p[(µ, 1− µ) =
∫

Ω
µdP. (8)

On the other hand, since

p](µ, 1− µ) =
∫

Ω
µdP,

putting ν = 1− µ we obtain

p](1− ν, ν) =
∫

Ω
(1− ν)dP = 1−

∫

Ω
νdP,

and again by (iv)

p](µ, ν) = 1−
∫

Ω
νdP. (9)

(8) and (9) imply

P((µ, ν)) = [p[((µ, ν)), p]((µ, ν))]

= [
∫

Ω
µdP, 1−

∫

Ω
νdP ].

4 Conclusion

We have shown a possibility to define probabil-
ity on intuitionistic fuzzy events axiomatically.
Therefore it could be possible to develop prob-
ability theory only on the base of additivity and
continuity.
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