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Abstract: The apparatus of Generalized Nets is applied here to a
description of a selection operator, which is one of the basic
genetic algorithm operators. This genetic operator performs a
probabilistic selection based upon the individual’s fittness such
that the better individuals have an increased chance of being
selected for the next generation. The resulting GN model could be
considered as a separate module, but can also be accumulated
into a GN model to describe a whole genetic algorithm.
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I. INTRODUCTION

Genetic Algorithms (GA) are an adaptive heuristic search
algorithm based on the evolutionary ideas of natural selection
and genetics [7, 9]. The basic techniques of GA are designed to
simulate processes in natural systems necessary for evolution,
especially those follow the principles first laid down by Charles
Darwin of “survival of the fittest”. GA require only
information concerning the quality of the solution produced by
each parameter set (objective function value information). This
characteristic differ GA from the optimization methods that
require derivative information or, worse yet, complete
knowledge of the problem structure and parameters. Since GA
do not require such problem-specific information, they
represent an intelligent exploitation of a random search used to
solve optimization problems in a large domain of problems.

GA are implemented in a computer simulation in which a
population of abstract representations (called chromosomes or
the genotype of the genome) of candidate solutions (called
individuals, creatures, or phenotypes) to an optimization
problem evolves toward better solutions. The evolution usually
starts from a population of randomly generated individuals and
happens in generations. In each generation, the fitness of every
individual in the population is evaluated, multiple individuals
are stochastically selected from the current population (based
on their fitness), and modified (recombined and possibly
randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm.
Commonly, the algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory

fitness level has been reached for the population. Once the
genetic representation and the fitness function are defined, GA
proceed to initialize a population of solutions randomly, then
improve it through repetitive application of mutation,
crossover, inversion and selection operators.

GA are quite popular and are applied in many domains –
industrial design, scheduling, network design, routing, time
series prediction, database mining, control systems, artificial
life systems, as well as in many fields of science [5, 8÷10, 18].
On the other hand, until now the apparatus of Generalized Nets
(GN) has been used as a tool for the description of parallel
processes in several areas – economics, transport, medicine,
computer technologies, etc. [1÷3, 12÷17]. That is why the idea
of application of GN to GA description has intuitively
appeared. Only a few GN models regarding genetic algorithm
performance have been developed until now [1, 3, 12÷17]. In
[1, 3] a GN model for genetic algorithms learning is proposed.
The GN model in [16] describes the selection of genetic
algorithm operators. The model has the possibility to test
different groups of the defined genetic algorithm operators and
to choose the most appropriate combination between them. The
developed GN executes an GA and realizes tuning of the
genetic operators, as well as of the fitness function, for the
considered problem. The GN model in [17] describes the
genetic algorithm search procedure. The model simultaneously
evaluates several fitness functions, ranks the individuals
according to their fitness and has the opportunity to choose the
best fitness function regarding to specific problem domain. In
[12÷15] the basic genetic algorithms operators –
correspondingly selection, crossover and mutation are
described using GN. Different types of crossover, namely one-,
two-point crossover, as well as “cut and splice” techniques, are
described in details in [14]. GN model, presented in [15],
describes the mutation operator of the Breeder genetic
algorithm. The GN model of a roulette wheel selection method
as one of the widely used selection functions has been
developed and presented in [12], while the GN model of a
stochastic universal sampling is presented in [13]. The purpose
of this investigation is to be developed a GN model, depicted
the algorithm of selection of which individuals to pass on their
genes to the next generation. This GN model intends to
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incorporate the selection previously made by the roulette wheel
selection method or the stochastic universal sampling thus
appearing as an upper level in the description of a whole
genetic algorithm.

II. SELECTION OPERATOR
The selection of individuals to produce successive

generations plays an extremely important role in a genetic
algorithm. A probabilistic selection is performed based upon
the individual’s fitness such that the better individuals have an
increased chance of being selected. An individual in the
population can be selected more than once with all individuals
in the population having a chance of being selected to
reproduce into the next generation.

During each successive generation, a proportion of the
existing population is selected to breed a new generation.
Individual solutions are selected through a fitness-based
process, where fitter solutions (as measured by a fitness
function) are typically more likely to be selected. Certain
selection methods rate the fitness of each solution and
preferentially select the best solutions. Other methods rate only
a random sample of the population, as this process may be very
time-consuming.

Most functions are stochastic and designed so that a small
proportion of less fit solutions are selected. This helps keep the
diversity of the population large, preventing premature
convergence on poor solutions. There are many methods how
to select the best individuals, i.e. roulette wheel selection,
Boltzman selection, tournament selection, rank selection,
steady state selection and some others [4]. Among the most
popular and well-studied selection methods are roulette wheel
selection and tournament selection. The selection method is a
user-defined parameter of the whole procedure of selection.

Fig. 1 presents the Matlab code from Genetic algorithms
Toolbox [6, 11] of the function selection (select.m).

III. GN MODELS OF SELECTION OPERATOR
The GN model depicted the algorithm of selection, as

described in the function select.m [6, 11], is presented in Fig. 2.

The token α enters GN in place l1 with an initial
characteristic “pool of possible parents”. The token α is split
into new tokens δ, ε, ρ, β, σ and γ, which obtain
correspondingly following characteristics:

• δ in place l2 – “rate of individuals to be selected (GGAP)”;

• ε in place l3 – “identification of the population size
(Nind)”;

• ρ in place l4 – “number of subpopulations (SUBPOP)”;

• β in place l5 – “fitness values of the individuals in the
population (FitnV)”;

• σ in place l6 – “name of the selection function (SEL_F)”;

• γ in place l7 – “individuals (parents) of the current
population (Chrom)”.

Figure 1.  Matlab function select.m

% SELECT.M (universal SELECTion)
%
% This function performs universal selection. The function handles
% multiple populations and calls the low level selection function
% for the actual selection process.
%
% Syntax: SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)
%
% Input parameters:
% SEL_F - Name of the selection function
% Chrom - Matrix containing the individuals (parents) of the
% current population. Each row corresponds to one
%   individual.
% FitnV - Column vector containing the fitness values of the
%  individuals in the population.
% GGAP - (optional) Rate of individuals to be selected
%  if omitted 1.0 is assumed
% SUBPOP - (optional) Number of subpopulations
%  if omitted 1 subpopulation is assumed
%
% Output parameters:
% SelCh - Matrix containing the selected individuals.

% Author: Hartmut Pohlheim
% History: 10.03.94     file created

function SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP);

% Check parameter consistency
if nargin < 3, error('Not enough input parameter'); end

% Identify the population size (Nind)
[NindCh, Nvar] = size(Chrom);
[NindF, VarF] = size(FitnV);
if NindCh ~= NindF, error('Chrom and FitnV disagree'); end
if VarF ~= 1, error('FitnV must be a column vector'); end

if nargin < 5, SUBPOP = 1; end
if nargin > 4,

if isempty(SUBPOP), SUBPOP = 1;
elseif isnan(SUBPOP), SUBPOP = 1;
elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar');
end

end

if (NindCh/SUBPOP) ~= fix(NindCh/SUBPOP),
error('Chrom and SUBPOP disagree'); end

Nind = NindCh/SUBPOP;

if nargin < 4, GGAP = 1; end
if nargin > 3,

if isempty(GGAP), GGAP = 1;
elseif isnan(GGAP), GGAP = 1;
elseif length(GGAP) ~= 1, error('GGAP must be a scalar');
elseif (GGAP < 0),

error('GGAP must be a scalar bigger than 0'); end
end

% Compute number of new individuals (to select)
NSel = max(floor(Nind*GGAP + .5), 2);

% Select individuals from population
SelCh = [];

   for irun = 1:SUBPOP,
FitnVSub = FitnV((irun - 1)*Nind + 1:irun*Nind);
ChrIx = feval(SEL_F, FitnVSub, NSel) + (irun - 1)*Nind;
SelCh = [SelCh; Chrom(ChrIx, :)];

end
% End of function
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Figure 2.  GN model of selection operator

The form of the first transition of the GN model is as
follows:

 Z1 = <{l1}, {l2, l3, l4, l5, l6, l7}, r1, ∧(l1) >

  l2 l3 l4 l5 l6 l7

r1 = l1 true true true true true true

The tokens δ and ε are combined in a new token η in place
l8 with a characteristic “number of individuals to be selected
(Nsel)”. The token ε keeps its characteristic “identification of
the population size (Nind)” in place l9, while the token ρ
obtains a new characteristic “cycle index irun = 1:SUBPOP” in
place l10.

The form of the second transition of the GN model is as
follows:

 Z2 = <{l2, l3, l4}, {l8, l9, l10}, r2, ∧(l2, l3, l4) >,

  l8 l9 l10

r2 = l2 true false false

 l3 true true false

 l4 false false true

Further, the tokens ε, ρ and β are combined in a new token
ϕ in place l12 with a characteristic “calculation of the function
FitnVSub = FitnV((irun - 1)*Nind + 1:irun*Nind)”. The token
ε keeps its characteristic “identification of the population size 
(Nind)” in place l11. The token ρ obtains a new characteristic
“increment of the cycle index irun” in place l13, until irun
becomes bigger than SUBPOP. The form of the third transition
of the GN model is as follows:

 Z3 = <{l5, l9, l10, l13, l17}, {l11, l12}, r3, ∧(l5, l9, l10, l13, l17) >

  l11 l12

r3 = l5 false true

 l9 true true

 l10 false true

 l13 false W13,12

 l17 false W17,12

where W13,12 = “irun ≤ SUBPOP”,

W17,12 = “irun < SUBPOP”.

Further, the tokens ϕ , σ, η, ε and ρ are combined in a new
token θ in place l14 with a characteristic “calculation of the
function

ChrIx = feval(SEL_F, FitnVSub, NSel) + (irun - 1)*Nind)”.

The form of the fourth transition of the GN model is as
follows:

 Z4 = <{l6, l8, l11, l12}, {l14 }, r4, ∧(l6, l8, l11, l12) >

  l14

r4 = l6 true

 l8 true

 l11 true

 l12 true

The tokens θ and γ are combined in a new token ω in place
l15 with a characteristic “calculation of the function SelCh”.
The form of the fifth transition of the GN model is as follows:

Z5 = <{l7, l14 }, {l15}, r5, ∧(l7, l14) >

  l15

r5 = l7 true

 l14 true
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The token ω obtains characteristics “selected individuals
for next generation” in place l16 and “selection of individuals
from population” in place l17. The form of the sixth transition
of the GN model is as follows:

Z6 = <{l15 }, {l16, l17}, r6, ∧(l15) >

  l16 l17

r6 = l15 W15,16 W15,17

where W15,16 = “irun = SUBPOP”;

W15,17 = ¬ W15,16.

In the place l16 the selection of individuals from population
is completely fulfilled. The GN model of the selection operator
presented here could be considered as a separate module, but
can also be collected into a GN model to describe a whole
genetic algorithm.

IV. ANALYSIS AND CONCLUSIONS
The theory of Generalized Nets has been applied here to a

description of one of the basic operators of genetic algorithms,
namely the selection operator. A GN model developed in this
paper depicts the algorithm of selection of which individuals to
pass on their genes to the next generation. Such a GN model
could be considered as a separate module, but also can be
accumulated into one GN model for a description of a whole
genetic algorithm, together with GN models of two other basic
genetic operators crossover and mutation. The final aim is to
produce GNs which are universal for all genetic algorithms to
be constructed.
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