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1 Introduction

The first topological operators defined over Intuitionistic Fuzzy Sets (IFSs, see [1, 2]) were intro-
duced 30 years ago. About 15 years later they were extended and modified (see [2]). Now, a new
operator is introduced. It has essentially different properties than previous ones.

Here, we give the definition of the new operator and study some of its basic properties.
Initially, we give some basic definitions, related to the IFSs, following [2].
Let a set E be fixed. An IFS A in E is an object of the following form:

A = {〈x, µA(x), νA(x)〉|x ∈ E},

where the functions µA : E → [0, 1] and νA : E → [0, 1] define the degree of membership and
the degree of non-membership of the element x ∈ E, respectively, and for every x ∈ E:

0 ≤ µA(x) + νA(x) ≤ 1.
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For every two IFSs A and B a lot of operations, relations and operators have been defined
(see, e.g. [2]), the most important of which, related to the present research, are:

A ⊂ B iff (∀x ∈ E)(µA(x) ≤ µB(x)&νA(x) ≥ νB(x)),

A = B iff (∀x ∈ E)(µA(x) = µB(x) & νA(x) = νB(x)),

¬A = {〈x, νA(x), µA(x)〉|x ∈ E},

A = {〈x, µA(x), 1− µA(x)〉|x ∈ E},

♦A = {〈x, 1− νA(x), νA(x)〉|x ∈ E}.

Here, ¬A is the classical negation. Let U∗ = {〈x, 0, 0〉|x ∈ E}.

2 Main results

For every IFS A 6= U∗, the new topological operator has the form

T (A) = {〈x, µA(x)

sup
y∈E

(µA(y) + νA(y))
,

νA(x)

sup
y∈E

(µA(y) + νA(y))
〉|x ∈ E}.

Therefore, operator T decreases the degree of uncertainty, increasing both the degrees of
membership and non-membership.

Theorem 1. For every IFS A 6= U∗: T (T (A)) = T (A).

Proof. Let A be an IFS. Then

T (T (A)) = T ({〈x, µA(x)

sup
y∈E

(µA(y) + νA(y))
,

νA(x)

sup
y∈E

(µA(y) + νA(y))
〉|x ∈ E})

= {〈x,

µA(x)
sup
y∈E

(µA(y)+νA(y))

sup
z∈E

( µA(z)
sup
y∈E

(µA(y)+νA(y))
+ νA(z)

sup
y∈E

(µA(y)+νA(y))
)
,

νA(x)
sup
y∈E

(µA(y)+νA(y))

sup
z∈E

( µA(z)
sup
y∈E

(µA(y)+νA(y))
+ νA(z)

sup
y∈E

(µA(y)+νA(y))
)
〉|x ∈ E}

= {〈x,

µA(x)
sup
y∈E

(µA(y)+νA(y))

sup
z∈E

( µA(z)+νA(z)
sup
y∈E

(µA(y)+νA(y))
)
,

νA(x)
sup
y∈E

(µA(y)+νA(y))

sup
z∈E

( µA(z)+νA(z)
sup
y∈E

(µA(y)+νA(y))
)
〉|x ∈ E}

= {〈x,

µA(x)
sup
y∈E

(µA(y)+νA(y))

sup
z∈E

(µA(z)+νA(z))

sup
y∈E

(µA(y)+νA(y))

,

νA(x)
sup
y∈E

(µA(y)+νA(y))

sup
z∈E

(µA(z)+νA(z))

sup
y∈E

(µA(y)+νA(y))

〉|x ∈ E}

= {〈x, µA(x)

sup
y∈E

(µA(y) + νA(y))
,

νA(x)

sup
y∈E

(µA(y) + νA(y))
〉|x ∈ E}

= T (A).

This completes the proof. �
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Theorem 2. For every IFS A 6= U∗: ¬T (¬A) = T (A).

Theorem 3. For every IFS A 6= U∗:
(a) T ( A) = A,

(b) A ⊂ T (A),

(c) T (♦A) = ♦A,
(d) ♦T (A) ⊂ ♦A.

Theorems 2 and 3 are proved by analogy.
As it is discussed in [1, 2], the IFSs have different geometrical interpretations. One of them

(probably, the most important among the IFS interpretations) is shown in Fig. 1, where x ∈ E is
an arbitrary element of the universe.

Now, we see that operator T transforms element x with respect to its degrees µA(x) and
νA(x), if µA(x) + νA(x) = sup

y∈E
(µA(y) + νA(y)) and element z ∈ E with µA(z) + νA(z) <

sup
y∈E

(µA(y) + νA(y)), as it is shown in Fig. 2.
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Figure 1. Figure 2.

3 Conclusion

In future, other properties of the operator T will be studied. It can obtain concrete applications
for solving of different problems, e.g., in the area of the intercriteria analysis (see [3]). In this
case, as we mentioned above, the degree of uncertainty for the discussed data will be decreased.
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