Eighth Int. Conf. on IFSs, Varna, 20-21 June 2004
NIFS 10 (2004) 3, 44-46

Derivatives Related to Intuitionistic Fuzzy Sets Radoslav Tzvetkov

CLBME - Bulg. Academy of Sci., P.O.Box 12, Sofia-1113, Bulgaria
In this paper we propose a way to define derivative of a function of a special kind. This kind is described by the function $F_{A}(\alpha)$ defined further down.

Let $E=E\left(+,\|,\|_{E}\right)$ be a universe over the set of real numbers closed with respect to the operation + . Let

$$
P=\left\{<x, \mu_{P}(x), \nu_{P}(x)>/ x \in E\right\}
$$

be an IFS (see[1]).
We shall introduce an operator F_{A} using following
DEFINITION 0: If

$$
A=\left\{<x, \mu_{A}(x), \nu_{A}(x)>/ x \in E\right\}
$$

then

$$
F_{A}(\alpha)=\left\{<x, \mu_{A}(x+\alpha), \nu_{A}(x+\alpha)>/ x \in E\right\},
$$

where a given $\alpha \in E$.
PROPOSITION 1: $F_{A}(\alpha)$ is an IFS.
Proof: A is an IFS. Therefore

$$
0 \leq \mu_{A}(x+\alpha)+\nu_{A}(x+\alpha) \leq 1
$$

So $F_{A}(\alpha)$ is an IFS.
Let t be a function defined over E.

$$
H_{p}^{s}:=\left\{t(x) /(\forall x, \Delta x \in E)\left(\|\Delta x\| \leq s \&\|\Delta x\| \leq s|t(x+\Delta x)-t(x)| \leq p(x)\|\Delta x\|_{E}\right)\right\} .
$$

Let

$$
M:=\left\{t(x) /(\forall x \in E)\left(\exists t^{\prime}(x):=\lim _{\|\Delta x\|_{E} \rightarrow 0}|t(x+\Delta x)-t(x)| /\|\Delta x\|_{E}\right\}\right.
$$

DEFINITION 1: If $\mu_{A}(x) \in H_{\mu_{P}}^{s}$ and $\nu_{A}(x) \in H_{\nu_{P}}^{s}$ and $\|\Delta \alpha\|_{E} \leq s \leq 1$ we define

$$
\begin{gathered}
\Delta F_{A}(\alpha):=F_{A}(\alpha+\Delta \alpha)-F_{A}(\alpha):= \\
\left\{<x,\left|\mu_{A}(x+\alpha+\Delta \alpha)-\mu_{A}(x+\alpha)\right|,\left|\nu_{A}(x+\alpha+\Delta \alpha)-\nu_{A}(x+\alpha)\right|>/ x \in E\right\}
\end{gathered}
$$

PROPOSITION 2: $\Delta F_{A}(\alpha)$ is an IFS.
Proof: From $\mu_{A}(x) \in H_{\mu_{P}}^{s}$ and $\nu_{A}(x) \in H_{\nu_{P}}^{s}$ and $\|\Delta \alpha\|_{E} \leq s \leq 1$ we have that

$$
\begin{gathered}
0 \leq\left|\mu_{A}(x+\alpha+\Delta \alpha)-\mu_{A}(x+\alpha)\right|+\left|\nu_{A}(x+\alpha+\Delta \alpha)-\nu_{A}(x+\alpha)\right| \\
\leq\left(\mu_{P}(x)+\nu_{P}(x)\right)\|\Delta \alpha\|_{E} \\
\leq\|\Delta \alpha\|_{E} \leq s \leq 1
\end{gathered}
$$

because $0 \leq \mu_{P}(x)+\nu_{P}(x) \leq 1$. Therefore, $\Delta F_{A}(\alpha)$ is an IFS.
DEFINITION 2: If $\mu_{A}(x) \in H_{\mu_{P}}^{s}$ and $\nu_{A}(x) \in H_{\nu_{P}}^{s}$ and $\|\Delta \alpha\|_{E} \leq s \leq 1$ Then

$$
\begin{gathered}
\Delta F_{A}(\alpha) /\|\Delta \alpha\|_{E}:= \\
\left\{<x,\left|\mu_{A}(x+\alpha+\Delta \alpha)-\mu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E}\right. \\
\left.\left|\nu_{A}(x+\alpha+\Delta \alpha)-\nu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E}>/ x \in E\right\}
\end{gathered}
$$

PROPOSITION 3: $\Delta F_{A}(\alpha) /\|\Delta \alpha\|_{E}$ is an IFS.
Proof: From $\mu_{A}(x) \in H_{\mu_{P}}^{s}$ and $\nu_{A}(x) \in H_{\nu_{P}}^{s}$ and $\|\Delta \alpha\|_{E} \leq s \leq 1$ we have that

$$
\begin{gathered}
0 \leq\left|\mu_{A}(x+\alpha+\Delta \alpha)-\mu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E}+\left|\nu_{A}(x+\alpha+\Delta \alpha)-\nu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E} \\
\leq\left(\mu_{P}(x)+\nu_{P}(x)\right) \leq 1\left(0 \leq \mu_{P}(x)+\nu_{P}(x) \leq 1\right)
\end{gathered}
$$

DEFINITION 3: If $\mu_{A}(x) \in H_{\mu_{P}}^{s}, \nu_{A}(x) \in H_{\nu_{P}}^{s}, \mu_{A}(x) \in M, \nu_{A}(x) \in M$ and $\|\Delta \alpha\|_{E} \leq s \leq 1$

Then

$$
\begin{gathered}
F_{A}^{\prime}(\alpha):=\lim _{\|\Delta \alpha\|_{E} \rightarrow 0} \Delta F_{A}(\alpha) /\|\Delta \alpha\|_{E}:= \\
\left\{<x, \lim _{\|\Delta \alpha\|_{E} \rightarrow 0}\left|\mu_{A}(x+\alpha+\Delta \alpha)-\mu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E},\right. \\
\left.\lim _{\|\Delta \alpha\|_{E} \rightarrow 0}\left|\nu_{A}(x+\alpha+\Delta \alpha)-\nu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E}>/ x \in E\right\}
\end{gathered}
$$

PROPOSITION 4: $F^{\prime}{ }_{A}(\alpha)$ is an IFS.
Proof: From $\mu_{A}(x) \in H_{\mu_{p}}^{s}, \nu_{A}(x) \in H_{\nu_{P}}^{s}$ we have

$$
0 \leq\left|\mu_{A}(x+\alpha+\Delta \alpha)-\mu_{A}(x+\alpha)\right| / \| \Delta \alpha| |_{E} \leq \mu_{P}(x) \leq 1
$$

and

$$
0 \leq\left|\nu_{A}(x+\alpha+\Delta \alpha)-\nu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E} \leq \nu_{P}(x) \leq 1
$$

From $\mu_{A}(x) \in M, \nu_{A}(x) \in M$ we have

$$
0 \leq \lim _{\|\Delta \alpha\|_{E} \rightarrow 0}\left|\mu_{A}(x+\alpha+\Delta \alpha)-\mu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E} \leq \mu_{P}(x) \leq 1
$$

and

$$
0 \leq \lim _{\|\Delta \alpha\|_{E} \rightarrow 0}\left|\nu_{A}(x+\alpha+\Delta \alpha)-\nu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E} \leq \nu_{P}(x) \leq 1
$$

Therefore

$$
\begin{gathered}
0 \leq \lim _{\|\Delta \alpha\|_{E} \rightarrow 0}\left|\mu_{A}(x+\alpha+\Delta \alpha)-\mu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E} \\
+\lim _{\|\Delta \alpha\|_{E} \rightarrow 0}\left|\nu_{A}(x+\alpha+\Delta \alpha)-\nu_{A}(x+\alpha)\right| /\|\Delta \alpha\|_{E} \\
\leq \mu_{P}(x)+\nu_{P}(x) \leq 1
\end{gathered}
$$

i.e., P is an IFS.

Acknowledgment

This work was supported by the National Fund for Scientific Research of Bulgaria under contract I-1303/2003.

References

[1] Atanassov K., Intuitionistic Fuzzy Sets, Physica Verlag, 1999.
[2] Rudin W., Principles of Mathematical Analysis, Real and Complex Analysis, McGraw-Hill, 1986.

