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Abstract— We consider some existing similarity measures for

Atanassov’s intuitionistic fuzzy sets (A-IFSs, for short). We show

that neither similarity measures treating an A-IF as a simple in-

terval values fuzzy set, nor straightforward generalizations of the

similarity measures well-known for the classic fuzzy sets work un-

der reasonable circumstances. Next, expanding upon our previous

works, we consider a family of similarity measures constructed by

taking into account both all the three functions (the membership,

non-membership and hesitation) describing an A-IF, and the com-

plements of the elements we compare to each other. That is, we use

all kinds and fine shades of information available. We point out their

proper behavior and an intuitive appeal.

Keywords— Atanassov’s intuitionistic fuzzy sets, similarity mea-

sures.

1 Introduction

Atanassov’s intuitionistic fuzzy sets (Atanassov [1], [2], [3])

– to be called A-IFSs, for short – can be viewed as a tool

that may better model and process imperfect information. The

use of positive and (independently) negative information that

is the core of A-IFSs is natural in real life and is also well-

known, advocated and studied in psychology and other so-

cial and behavioral sciences [e.g., [21], [14]]. It also at-

tracted much attention and research interest in soft comput-

ing. It would be difficult to deal with machine learning (mak-

ing use of examples and counter-examples), modeling of pref-

erences or voting without taking into account positive and

(independently) negative testimonies or opinions. Although

from a mathematical point of view A-IFSs are equipotent,

under some assumptions, to interval-valued fuzzy sets (cf.

Atanassov and Gargov in 1989 [4]), from the point of view of

solving problems (starting from the stage of collecting data),

they are different as A-IFSs force the user to explicitly con-

sider positive and negative information independently. On the

other hand, while employing the interval-valued fuzzy sets,

the user’s attention is focused on positive information (in an

interval form) only. Notably, Dubois [9] noticed recently that

A-IFSs correspond to an intuition that differs from that behind

the interval valued fuzzy sets.

The fact that people tend to notice and take into account

only most obvious aspects (e.g. advantages only) when

making decision is well known in psychology (cf. Kahne-

man [14]), Sutherland [21]) and may often lead to improper

decisions. In this context, A-IFSs (“forcing” a decision maker

to take into account both negative and positive aspects of the

decisions) may be seen as belonging to modern and promising

means of knowledge representation and processing.

We consider here some major similarity measures for A-

IFSs. First we present a whole array of similarity measures

(known from the literature) for A-IFSs viewed in terms of sin-

gle intervals. Second, we consider measures that are straight-

forward generalization of the similarity measures for the con-

ventional fuzzy sets. Unfortunately, both do not meet our ex-

pectations, and we provide some counter-intuitive examples.

It seems to be an indirect hint that A-IFSs are not functionally

equivalent to the interval valued fuzzy sets.

Next, we reconsider our (cf. Szmidt and Kacprzyk [41])

concept of a similarity measure between A-IFSs taking into

account all three functions (the membership, non-membership

and hesitation), and explicitly add to the above three functions

the complements of the elements we compare to each other.

2 A brief introduction to A-IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh

[48]), given by

A
′

= {< x, µA′ (x) > |x ∈ X} (1)

where µA′ (x) ∈ [0, 1] is the membership function of the fuzzy

set A
′

, is Atanassov’s intuitionistic fuzzy set (Atanassov [1],

[2], [3]), A-IF, A given by

A = {< x, µA(x), νA(x) > |x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0<µA(x) + νA(x)<1 (3)

and µA(x), νA(x) ∈ [0, 1] denote the degree of membership

and a degree of non-membership of x ∈ A, respectively.

Each fuzzy set may be represented by the following A-IF

A = {< x, µA′ (x), 1 − µA′ (x) > |x ∈ X} (4)

For each intuitionistic fuzzy set in X , we will call

πA(x) = 1 − µA(x) − νA(x) (5)

an intuitionistic fuzzy index (or a hesitation margin) of x ∈ A
and, it expresses a lack of knowledge of whether x belongs to

A or not (cf. Atanassov [3]). It is obvious that 0 ≤ πA(x) ≤ 1,

for each x ∈ X .

The hesitation margin turns out to be important while con-

sidering the distances (Szmidt and Kacprzyk [26], [29], [39],

entropy (Szmidt and Kacprzyk [31], [40]), similarity (Szmidt

and Kacprzyk [41]) for the A-IFSs, etc. i.e., the measures that

play a crucial role in virtually all information processing tasks.

In our further considerations we will use the following dis-

tances between fuzzy sets A, B in X = {x1,, . . . , xn} Szmidt
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and Baldwin [23], [24], Szmidt and Kacprzyk [29], [39]:

the normalized Hamming distance

lIFS(A, B) =
1
2n

n∑
i=1

(|µA(xi) − µB(xi)| + |νA(xi) −

νB(xi)| + |πA(xi) − πB(xi)|) (6)

and the normalized Euclidean distance:

qIFS(A, B) = (
1
2n

n∑
i=1

(µA(xi) − µB(xi))2 +

(νA(xi) − νB(xi))2 + (πA(xi) − πB(xi))2)
1

2 (7)

For distances (6), and (7) we have 0<lIFS(A, B)<1, and

0<qIFS(A, B)<1. Clearly these distances satisfy the condi-

tions of the metric.

In our further considerations we will use the notion of the

complement elements, which definition is a simple conse-

quence of a complement set AC

AC = {< x, νA(x), µA(x) > |x ∈ X} (8)

The use of A-IFSs instead of fuzzy sets implies the introduc-

tion of another degree of freedom (non-memberships) into the

set description. Such a generalization of fuzzy sets gives us an

additional possibility to represent imperfect knowledge which

leads to describing many real problems in a more adequate

way. Applications of intuitionistic fuzzy sets to group deci-

sion making, negotiations, voting and other situations are pre-

sented in Szmidt and Kacprzyk [25], [27], [28], [30], [32],

[34], [33], [35], [38], Szmidt and Kukier [42], [43].

3 Some counter-intuitive results given by the
traditional similarity measures

In the literature there is a multitude of similarity measures

both for A-IFSs (Atanassov [1, 2, 3], and vague sets (Gau and

Buehrer [10]) which have also been proved to be equivalent

to A-IFSs (Bustince and Burillo [5]). Here we adopt the no-

tation for A-IFSs but we will consider the measures originally

introduced for vague sets, too.

Chen [6, 7] considered similarity measures between two A-

IFSs A and B as

SC(A, B) = 1 −

∑n
i=1 |SA(xi) − SB(xi)|

2n
(9)

where SA(xi) = µA(xi) − νA(xi), SA(xi) ∈ [−1, 1] and

SB(xi) = µB(xi) − νB(xi), SB(xi) ∈ [−1, 1].
But, as Hong and Kim [11] noticed

µA(xi)−νA(xi) = µB(xi)−νB(xi) ⇒ SC(A, B) = 1 (10)

which is counterintuitive as, e.g., for A = (x, 0, 0) and B =
(x, 0.5, 0.5), we have SC(A, B) = 1.

To overcome the problem of SC (9), Hong and Kim [11]

proposed the similarity measures SH and SL

SH(A, B) = 1 − (
n∑

i=1

|µA(xi) − µB(xi)| +

|νA(xi) − νB(xi)|)/2n (11)

SL(A, B) = 1 −
1
4n

((
n∑

i=1

SA(xi) − SB(xi)) −

(
n∑

i=1

|µA(xi) − µB(xi)| + |νA(xi) − νB(xi)|)) (12)

Since SH(A, B) takes into account the absolute values, it

does not distinguish the positive from negative differences,

e.g., for A = {(x, 0.3, 0.3)}, B = {(x, 0.4, 0.4)}, C =
{(x, 0.3, 0.4)}, and D = {(x, 0.4, 0.3)}, we obtain from

(11) that SH(A, B)=SH(C, D) = 0.9 which seems counter-

intuitive.

SL(A, B) also gives counter-intuitive results, e.g. for A =
{(x, 0.4, 0.2)}, B = {(x, 0.5, 0.3)}, C = {(x, 0.5, 0.2)}, we

obtain from (12) SL(A, B)=SL(A, C) = 0.95 which seems

counter-intuitive.

The same problem like with SH occurs with the similarity

measure (cf. Li et al. [16]):

SO(A, B) = 1 − (1/2n)0.5(
n∑

i=1

(µA(xi) −

µB(xi))2 + (νA(xi) − νB(xi))2)0.5 (13)

Dengfeng and Chuntian [15] considered the similarity mea-

sure:

SDC(A, B) =

1 − (1/n1/p)(
n∑

i=1

(|mA(xi) − mB(xi)|)p)1/p (14)

where mA(xi) = (µA(xi) + 1 − νA(xi))/2, mB(xi) =
(µB(xi) + 1 − νB(xi))/2, 1 ≤ p < ∞. Unfortunately, as

for (14), the medians of two intervals are compared only, it

is rather easy to point out the counter-intuitive examples, e.g.,

A = (x, 0.4, 0.2), B = (x, 0.5, 0.3), then SDC(A, B) = 1,

for each p.

Mitchell [18] modified Dengfeng and Chuntian’s measure

SDC (14) using a statistical approach by interpreting A-IFSs

as families of ordered fuzzy sets. Let ρµ(A, B) and ρν(A, B)
denote a similarity measure between the “low” membership

functions µA and µB , and between the “high” membership

functions 1 − νA and 1 − νB , respectively, as:

ρµ(A, B) = SDC(µA, µB) =

1 − (1/n1/p)(
n∑

i=1

(|µA(xi) − µB(xi)|)p)1/p

ρν(A, B) = SDC(1 − νA, 1 − νB) =

1 − (1/n1/p)(
n∑

i=1

(|νA(xi) − νB(xi)|)p)1/p

Then the modified similarity measure between A and B is

SHB(A, B) = (ρµ(A, B) + ρν(A, B))/2 (15)

Unfortunately, SHB gives the same counter-intuitive results as

SH , for p = 1 and for one-element sets.

To overcome the drawbacks of SDC , Liang and Shi [17]

proposed Sp
e (A, B), Sp

s (A, B), Sp
h(A, B) as:
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Sp
e (A, B) =

1 − (1/n1/p)(
n∑

i=1

(φµAB(xi) − φνAB(xi)|)p)1/p(16)

where φµAB(xi) = |µA(xi)− µB(xi)|/2, φνAB(xi) = |(1−
νA(xi))/2 − (1 − νB(xi))|/2. But, for p = 1 and for one-

element sets, Sp
e (A, B)=SHB=SH , which are again the same

counter-intuitive results.

Sp
s (A, B) =

1 − (1/n1/p)(
n∑

i=1

(ϕs1(xi) − ϕs2(xi))p)1/p (17)

where: ϕs1(xi) = |mA1(xi) − mB1(xi)|/2,

ϕs2(xi) = |mA2(xi) − mB2(xi)|/2,

mA1(xi) = (µA(xi) + mA(xi))/2,

mA2(xi) = (mA(xi) + 1 − νA(xi))/2,

mB1(xi) = (µB(xi) + mB(xi))/2,

mB2(xi) = (mB(xi) + 1 − νB(xi))/2,

mA(xi) = (µA(xi) + 1 − νA(xi))/2,

mB(xi) = (µB(xi) + 1 − νB(xi))/2.

Sp
s (17) avoids the problematic results obtained from SDC

(14) (for the intervals with equal medians) but, again, a prob-

lem of counter-intuitive results remains. For example, for A =
{(x, 0.4, 0.2)}, B = {(x, 0.5, 0.3)}, C = {(x, 0.5, 0.2)}, we

obtain Sp
s (A, B) = Sp

s (A, C) = 0.95 which seems difficult to

accept.

Sp
h is given as

Sp
h(A, B) = 1 −

(1/(3n)1/p)(
n∑

i=1

(η1(i) + η2(i) + η3(i))p)1/p (18)

where η1(i) = φµ(xi) + φν(xi) (the same as for Sp
e ),

η2(i) = mA(xi) − mB(xi)) (the same as for SDC),

η3(i) = max(lA(i), lB(i)) − min(lA(i), lB(i)),
lA(i) = (1 − νA(xi) − µA(xi))/2,

lB(i) = (1 − νB(xi) − µB(xi))/2. But, again, there are

counter-intuitive cases for this measure. For A = (x, 0.3, 0.4),
and B = (x, 0.4, 0.3), i.e., for an element and its complement,

we obtain Sp
h(A, B) = 0.933 (which seems to be rather too

big a similarity for an element and its complement).

Hung and Yang [12] proposed the similarity measures S1
HY ,

S2
HY , S3

HY in which Hausdorff distances were employed:

S1
HY (A, B) = 1 − dH(A, B) (19)

S2
HY (A, B) = 1 − (edH(A,B) − e−1)/(1 − e−1) (20)

S3
HY (A, B) = (1 − dH(A, B))/(1 + dH(A, B)) (21)

where

dH(A, B))=
∑n

i=1 max(|µA(xi)−µB(xi)|, |νA(xi)−νB(xi)|)
Unfortunately, (19)–(21) give counter-intuitive results (im-

plied by the calculation of dH(A, B) - cf. Szmidt [22]).

For example if A = (x, 0.4, 0.5), B = (x, 0.5, 0.4), C =
(x, 0.5, 0.3), D = (x, 0.6, 0.4), E = (x, 0.6, 0.3), F =

(x, 0.4, 0.3) then S1
HY (A, B) = 0.9 (a counter-intuitive large

similarity for A and its complement as B = AC ), and also

S1
HY (C, D) = S1

HY (C, E) = S1
HY (C, F ) = 0.9. Next,

S2
HY (A, B) = S2

HY (C, D) = S2
HY (C, E) = S2

HY (C, F ) =
0.85, and also S3

HY (A, B) = S3
HY (C, D) = S3

HY (C, E) =
S3

HY (C, F ) = 0.85.

A straightforward attempt to calculate the similarity be-

tween A-IFSs just by adding the non-memberships values to

the existing similarity measures for fuzzy sets is due to Hung

and Yang [13]. Their measures (22) and (23) are the extension

of Wang’s measures [46]:

Sw1(A, B) = (1/n)
n∑

i=1

min (µA(xi), µB(xi)) + min (νA(xi), νB(xi))
max (µA(xi), µB(xi)) + max (νA(xi), νB(xi))

(22)

But, it is easy to give counter-examples again. For exam-

ple, for A = {(x, 0, 0.5)}, B = {(x, 0.1, 0.5)}, C =
{(x, 0, 0.6)}, we obtain Sw1(A, B) = Sw1(A, C) = 0.8(3)
(for different B and C we obtain the same result), for A =
{(x, 0, 0.5)}, B = {(x, 0.18, 0.5)}, C = {(x, 0, 0.68)}, we

obtain Sw1(A, B) = Sw1(A, C) = 0.735 (again - for differ-

ent B and C the same result) etc., which seems to be difficult

to accept (Sw1 is not bijective).

Sw2(A, B) = (1/n)
n∑

i=1

(1 − 0.5(|µA(xi) − µB(xi)| + |νA(xi) − νB(xi|)) (23)

But for A = {(x, 0, 0.5)}, B = {(x, 0, 0.4)}, C =
{(x, 0, 0.6)}, we obtain Sw2(A, B) = Sw2(A, C) = 0.95
(again - for different B and C the same similarity), which

seems to be difficult to accept (Sw2 is not bijective).

Another straightforward extensions of fuzzy similarity

measures proposed by Hung and Yang [13] for A-IFSS are

measures (24), (25) and (26) (they are extensions of Pappis

and Karacapilidis’ [20] measures for fuzzy sets).

Spk1(A, B) =∑n
i=1(min (µA(xi), µB(xi)) + min (νA(xi), νB(xi)))∑n
i=1(max (µA(xi), µB(xi)) + max (νA(xi), νB(xi)))

(24)

For (24) the counter-intuitive examples are like for (22).

Spk2(A, B) = 1 − 0.5(max
i

(|µA(xi)−µB(xi)|)+

max
i

(|νA(xi)−νB(xi)|)) (25)

For (25) it is easy to give counter-examples again - es-

pecially for one-element sets. For example, for A =
{(x, 0, 0.5)}, B = {(x, 0.1, 0.5)}, C = {(x, 0, 0.6)}, we ob-

tain Spk2(A, B) = Spk2(A, C) = 0.95 (for different B and C
just the same result).

Spk3(A, B) = 1−∑n
i=1(|µA(xi) − µB(xi)| + |νA(xi) − νB(xi)|)∑n
i=1(|µA(xi) + µB(xi)| + |νA(xi) + νB(xi)|)

(26)

But for A = {(x, 0, 0.5)}, B = {(x, 0, 0.26)}, C =
{(x, 0, 0.965)}, we obtain Spks(A, B) = Spk3(A, C) = 0.68
(again, for different B and C the same similarity), which

seems to be difficult to accept.
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3.1 Why the measures presented may yield counter-intuitive

results?

It is worth noticing that all the above measures were con-

structed to satisfy the following conditions:

S(A, B) ∈ [0, 1] (27)

S(A, B) = 1 ⇐⇒ A = B (28)

S(A, B) = S(B, A) (29)

IfA ⊆ B ⊆ C, then S(A, C) ≤ S(A, B) and

S(A, C) ≤ S(B, C) (30)

Conditions (27)–(29) are obvious. The problem lies in (30) as

this condition is meant as:

A ⊂ B iff ∀x ∈ X, µA(x) ≤ µB(x) and

νA(x) ≥ νB(x) (31)

Unfortunately, (31) is not constructive and operational for A-

IFSs as for many cases it can not be used. For example, for

the elements (x : (µ, ν, π)): x1: (0.12, 0.4, 0.48) and x2:

(0.1, 0.3, 0.6) we can not come to a conclusion. Moreover,

element x: (0, 0, 1) seems to be always beyond consideration

in the sense of (31) which is very specific, and mostly practi-

cally irrelevant.

Furthermore, most of the similarity measures shown above

are in fact similarity measures comparing just two intervals

(each interval representing one of the A-IFSs under compar-

ison). But we should bear in mind that elements of A-IF are

described via the membership and non-membership function

and the hesitation margin. In other words, in the terms of in-

tervals, we have both the membership in an interval, and the

non-membership in an interval so that we should represent an

A-IF via two (not one) intervals.

Considering the representation of A-IFSs as single inter-

vals implies some problems while calculating distances. Dis-

tances used in the (counter-intuitive) similarity measures men-

tioned in the previous section are calculated without taking

into account the hesitation margins as the membership and

non-membership functions only are taken into account. The

counter-intuitive results obtained in such a case are in Szmidt

and Kacprzyk [29], [39], Szmidt [22].

4 Some examples of intuitively justified and
operational similarity measures

First we recall the measure of similarity between A-IFSs pre-

sented by Szmidt and Kacprzyk [37], [36]).

In the simplest situations we calculate the similarity of any

two elements X and F belonging to an A-IF (A-IFSs). The

proposed measures indicate if X is more similar to F or to

FC , where FC is the complement of F . In other words, the

proposed measures answer the question: is X more similar or

more dissimilar to F ?

Definition 1

Simrule(X, F ) =
lIF (X, F )

lIF (X, FC)
(32)

where: lIFS(X, F ) is a distance from X(µX , νX , πX) to

F (µF , νF , πF ),

lIFS(X, FC) is a distance from X(µX , νX , πX) to

FC(νF , µF , πF ),
FC is a complement of F , distances lIFS(X, F ) and

lIFS(X, FC) are calculated from (6).

For (32) we have

0<Simrule(X, F )<∞ (33)

Simrule(X, F ) = Simrule(F, X)

The similarity has typically been assumed to be symmetric.

Tversky [44], however, has provided some empirical evidence

that the similarity should not always be treated as a symmet-

ric relation. We stress this to show that a similarity measure

(32) may have some features which can be useful in some sit-

uations but are not welcome in others (see Cross and Sud-

kamp [8], Wang et al. [47], Veltkamp [45]).

It is obvious (cf. Szmidt and Kacprzyk [36]) that the for-

mula (32) can also be stated as

Simrule(X, F ) =
lIFS(X, F )

lIFS(X, FC)
=

lIFS(XC , FC)
lIFS(X, FC)

=

=
lIFS(X, F )

lIFS(XC , F )
=

lIFS(XC , FC)
lIFS(XC , F )

(34)

It is worth noticing that

– Simrule(X, F ) = 0 means the identity of X and F .

– Simrule(X, F ) = 1 means that X is to the same extent

similar to F and FC (i.e., values bigger than 1 mean a closer

similarity of X and FC to X and F ).

– When X = FC (or XC = F ), i.e. lIFS(X, FC) =
=lIFS(XC , F )= 0 means the complete dissimilarity of X
and F (or in other words, the identity of X and FC ), and then

Simrule(X, F ) → ∞.

– When X = F = FC means the highest possible entropy

(see [31]) for both elements F and X i.e. the highest ”fuzzi-

ness” – not too constructive a case when looking for compati-

bility (both similarity and dissimilarity).

In other words, while applying the measure (32) to analyze

the similarity of two objects, one should be interested in the

values 0<Simrule(X, F ) < 1.

The proposed measure (32) was constructed for selecting

objects which are more similar than dissimilar [and well-

defined in the sense of possessing (or not) attributes we are

interested in]. In Szmidt and Kacprzyk [37] it was shown

that a measure of similarity defined as above, (32), between

X(µX , νX , πX) and F (µF , νF , πF ) is more powerful than a

simple distance between them. The following conclusion were

drawn:

– when a distance between two (or more) objects/elements,

or sets, is large, then it means for sure that the similarity does

not occur.

– when a distance is small, we can say nothing for sure about

similarity just on the basis of a distance between two objects

[when not taking into account complements of the objects as

in (32)]. The distance between objects can be small and the

compared objects can be more dissimilar than similar.

We have shown on a simple example (cf. Szmidt and

Kacprzyk [37]) that the measure (32) gives reasonable results

when applied to assessing agreement in a group of experts.

The only disadvantage of the proposed measure is that it does

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1419



Table 1: Example results obtained from the similarity measures (35)–(38)

1 2 3 4 5
X = (µ, ν, π) (0.3, 0.4, 0.3) (0.4, 0.2, 0.4) (0.4, 0.2, 0.4) (0, 0, 0)
F = (µ, ν, π) (0.4, 0.3, 0.3) (0.5, 0.3, 0.2) (0.5, 0.2, 0.3) (0.5, 0.5, 0)

Sim1 0 0.6 0.75 0.5
Sim2 0 0.43 0.6 0.33
Sim3 0 0.72 0.88 0.6
Sim4 0 0.48 0.65 0.38

not follow the range of the usually assumed values for the sim-

ilarity measures. But it is possible to construct a whole array

of similarity measures following the philosophy, and preserv-

ing the advantages of the measure (32), and whose numerical

values are consistent with the common scientific tradition (i.e.

belonging to [0, 1]). For example:

Sim1(X, F ) = Sim1(lIFS(X, F ), lIFS(X, FC)) =

1 −
lIFS(X, F )

lIFS(X, F ) + lIFS(X, FC)
(35)

Sim2(X, F ) = Sim2(lIFS(X, F ), lIFS(X, FC)) =
1 − f(lIFS(X, F ), lIFS(X, FC))
1 + f(lIFS(X, F ), lIFS(X, FC))

(36)

Sim3(X, F ) = Sim3(lIFS(X, F ), lIFS(X, FC)) =
1 − f(lIFS(X, F ), lIFS(X, FC))2

1 + f(lIFS(X, F ), lIFS(X, FC))2
(37)

Sim4(X, F ) = Sim4(lIFS(X, F ), lIFS(X, FC)) =

e−f(lIF S(X,F ),lIF S(X,F C)) − e−1

1 − e−1
(38)

where

f(lIFS(X, F ), lIFS(X, FC)) =

=
lIFS(X, F )

lIFS(X, F ) + lIFS(X, FC)
(39)

and 0 ≤ f(lIFS(X, F ), lIFS(X, FC)) ≤ 1.

The measures (35) – (38) give intuitive results. Some exam-

ples, being troublesome for other measures, are presented in

Table 1. It is worth noticing that each measure assigns similar-

ity equal 0 for an element (0.3, 0.4, 0.3) and its complement

(0.4, 0.3, 0.3). In general, similarity measures (35) – (38) sat-

isfy the following properties:

Simi(X, F ) ∈ [0, 1], (40)

Simi(X, X) = 1, (41)

Simi(X, XC) = 0, (42)

Simi(X, F ) = Simi(F, X), (43)

for i = 1, . . . , 4.

The similarity measures introduced in this section assess

similarity of any two elements (X and F ) belonging to an

intuitionistic fuzzy set (or sets). The counterpart similarity

measures for A-IFSs A and B containing n elements each,

are:

Simk(A, B)=
1
n

n∑
i=1

Simk(lIFS(Xi, Fi), lIFS(Xi, F
C
i )) (44)

for k = 1, . . . , 4.

5 Conclusions

We considered two groups of similarity measures between A-

IFSs. First, we dealt with similarity measures constructed

as if an A-IFSs was equal to a simple interval valued fuzzy

set, or similarity measures being straightforward generaliza-

tions of those well known for the fuzzy sets. Unfortunately,

in some situations, both approaches give counter-intuitive re-

sults. Second, we considered similarity measures account-

ing for all three functions describing an A-IF (the member-

ship, non-membership, and hesitation margin) which is differ-

ent from viewing an A-IF as a single interval. Next, we also

took into account the complements of the elements compared.

That is, we employed all kinds and fine shades of informa-

tion available. It seems that these last measures are the most

promising because, first of all, they help avoid some strong

counter-intuitive results. This is crucial for both theory and

applications.

References

[1] Atanassov K. (1983), Intuitionistic Fuzzy Sets. VII ITKR Ses-

sion. Sofia (Centr. Sci.-Techn. Libr. of Bulg. Acad. of Sci.,

1697/84) (in Bulgarian).

[2] Atanassov K. (1986) Intuitionistic Fuzzy Sets. Fuzzy Sets and

Systems, 20, 87–96.

[3] Atanassov K. (1999), Intuitionistic Fuzzy Sets: Theory and

Applications. Springer-Verlag.

[4] Atanassov K. and Gargov G. (1989), Interval-valued intuition-

istic fuzzy sets. Fuzzy sets and Systems, 31 (3), 343–349.

[5] Bustince H., Burillo P. (1996) Vague sets are intuitionistic

fuzzy sets. Fuzzy Sets and Systems 67, 403–405.

[6] Chen S. M. (1995) Measures of similarity between vague sets.

Fuzzy Sets and Systems 74(2), 217–223.

[7] Chen S. M. (1997) Similarity measures between vague sets

and between elements. IEEE Trans. Syst. Mn Cybernet. 27(1),

153–158.

[8] Cross V. and Sudkamp T. (2002) Similarity and Compatibility

in Fuzzy Set Theory. Physica-Verlag.

[9] Dubois D. On degrees of truth, partial ignorance and contra-

diction. Magdalena L., Ojeda-Aciego M., Verdegay J.M. (eds):

Proc. IPMU08, pp. 31–38.

[10] Gau W.L., Buehrer D.J. (1993) Vague sets. IEEE Trans. Sys-

tems Man Cybernet 23, 610–614.

[11] Hong D.H. and Kim C. (1999) A note on similarity measures

between vague sets and between elements. Inform Science 115,

83–96.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1420



[12] Hung W-L. and Yang M-S. (2004) Similarity measures of intu-

itionistic fuzzy sets based on Hausdorff distance. Pattern recog-

nition Letters 25, 1603–1611.

[13] Hung W.L and Yang M.S. (2008) On similarity measures be-

tween intuitionistic fuzzy sets. International Journal of Intelli-

gent Systems 23 (3): 364–383.

[14] Kahneman D. (2002) Maps of bounded rationality: a perspec-

tive on intuitive judgment and choice. Nobel Prize Lecture.

[15] Li D.F, Cheng C.T. (2002) New similarity measures of intu-

itionistic fuzzy sets and application to pattern recognitions. Pat-

tern Recognition Letters 23, 221–225.

[16] Li Y., Zhongxian C., Degin Y. (2002) Similarity measures be-

tween vague sets and vague entropy. J. Computer Sci. 29(12),

129–132.

[17] Liang Z. and Shi P. (2003) Similarity measures on intuitionistic

fuzzy sets. Pattern Recognition Lett. 24, 2687–2693.

[18] Mitchell H.B. (2003) On the Dengfeng-Chuntian similarity

measure and its application to pattern recognition. Pattern

Recognition Lett. 24, 3101–3104.
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