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1 Introduction
Let 𝑀 be a unitary module over a commutative ring 𝑅 with zero element 𝜃. Recall that a
submodule 𝐾 of an 𝑅-module 𝑀 is called an essential submodule of 𝑀 denoted by 𝐾 E𝑒 𝑀 , if
for every submodule 𝑁 of 𝑀 , 𝐾 ∩𝑁 = {𝜃} implies that 𝑁 = {𝜃}. Equivalently, 𝐾 ∩𝑁 ̸= {𝜃}
for all non-zero submodules 𝑁 of 𝑀 . A submodule 𝐾 of a module 𝑀 is called complement for
a submodule 𝑁 of 𝑀 if it is maximal with respect to the property that 𝐾 ∩𝑁 = {𝜃}. The socle
of an 𝑅-module 𝑀 is denoted by Soc(𝑀) and is defined as the sum of all simple submodules of
𝑀 , i.e., the socle of 𝑀 is the largest submodule of 𝑀 generated by simple modules. For more
information about essential submodules, complement of a submodule and socle of a module, we
refer to [1, 8, 16].
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Atanassov and Stoeva [3] generalized the notion of 𝐿-fuzzy subsets given by Goguen [6]
to an intuitionistic 𝐿-fuzzy subset, where 𝐿 is any complete lattice with a complete order
reversing involution 𝑁 . Wang and He in [15] and Deschrijver and Kerre in [5] studied the
relationship between intuitionistic fuzzy sets and 𝐿-fuzzy sets and some extensions of fuzzy set
theory. Palaniappan and others in [10] studied intuitionistic 𝐿-fuzzy subgroups. Meena and
Thomas in [9] discussed the notion of intuitionistic 𝐿-fuzzy subrings. Sharma et al. [7, 11, 12]
discussed intuitionistic 𝐿-fuzzy submodules, intuitionistic 𝐿-fuzzy prime and primary submodule
of a module. The notions like intuitionistic 𝐿-fuzzy essential submodule, intuitionistic 𝐿-fuzzy
complement of a submodule and intuitionistic 𝐿-fuzzy simple submodule were studied by the
author et al. in [13] and [14].

In this paper, our attempt is to investigate the intuitionistic 𝐿-fuzzy aspects of a socle of a
module. Using the concepts of intuitionistic 𝐿-fuzzy essentiality and relative complement defined
by the author et al. in [13], it is proved that if 𝐴 is an intuitionistic 𝐿-fuzzy submodule of
𝑀 such that 𝐴 = Soc(𝐴), then 𝐴 has no proper intuitionistic 𝐿-fuzzy essential submodules.
Further, if 𝐴 = Soc(𝐴) and 𝐼𝐹𝐿(𝐴) (the family of intuitionistic 𝐿-fuzzy submodules of 𝐴) is
complemented, then for any 𝐶 ∈ 𝐼𝐹𝐿(𝐴), 𝐼𝐹𝐿(𝐶) is also intuitionistic 𝐿-fuzzy complemented.
It is shown that if 𝐸 is the intersection of all intuitionistic 𝐿-fuzzy essential submodules of 𝐴,
where 𝐴 is an intuitionistic 𝐿-fuzzy submodule of 𝑀 , then every non-zero intuitionistic 𝐿-fuzzy
submodule of 𝐸 contains a simple intuitionistic 𝐿-fuzzy submodule of 𝐸. It leads us to the result
that Soc(𝐴) = 𝐸. Apart of these results we have also evaluated the socle of a direct sum of
intuitionistic 𝐿-fuzzy submodules.

2 Preliminaries
Throughout this paper, 𝑅 is a commutative ring with identity, 𝑀 a unitary 𝑅-module and 𝐿 stands
for a complete lattice with least element 0 and greatest element 1, 𝜃 denotes the zero element
of 𝑀 . The lattice 𝐿 is called regular if 𝑎 ∧ 𝑏 ̸= 0 for every 𝑎 ̸= 0, 𝑏 ̸= 0 and 𝑎 ∨ 𝑏 ̸= 1 for every
𝑎 ̸= 1, 𝑏 ̸= 1 (see [4]).

Definition 2.1. [7] Let (𝐿,≤) be a complete lattice with an evaluative order reversing operation
𝑁 : 𝐿 → 𝐿. Let 𝑋 be a non-empty set. An intuitionistic 𝐿-fuzzy set 𝐴 in 𝑋 is defined as an
object of the form 𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)⟩ : 𝑥 ∈ 𝑋}, where 𝜇𝐴 : 𝑋 → 𝐿 and 𝜈𝐴 : 𝑋 → 𝐿

define respectively the degree of membership and the degree of non-membership for every 𝑥 ∈ 𝑋

satisfying 𝜇𝐴(𝑥) ≤ 𝑁(𝜈𝐴(𝑥)). A complete order reversing involution is a mapping 𝑁 : 𝐿 → 𝐿

such that

(i) 𝑁(0) = 1 and 𝑁(1) = 0;

(ii) If 𝛼 ≤ 𝛽, then 𝑁(𝛽) ≤ 𝑁(𝛼);

(iii) 𝑁(𝑁(𝛼)) = 𝛼 ;

(iv) 𝑁(∨𝑛
𝑖=1𝛼𝑖) = ∧𝑛

𝑖=1𝑁(𝛼𝑖) and 𝑁(∧𝑛
𝑖=1𝛼𝑖) = ∨𝑛

𝑖=1𝑁(𝛼𝑖).
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We also denote an intuitionistic 𝐿-fuzzy set simply by 𝐼𝐿𝐹𝑆 and the set of all 𝐼𝐿𝐹𝑆
′
𝑠 on 𝑋

by 𝐼𝐿𝐹𝑆(𝑋).

Remark 2.2. When 𝜇𝐴(𝑥) = 𝑁(𝜈𝐴(𝑥)), for all 𝑥 ∈ 𝑋 , then 𝐴 is called 𝐿-fuzzy set. We use the
notion 𝐴 = (𝜇𝐴, 𝜈𝐴) to denote the intuitionistic 𝐿-fuzzy set 𝐴 = {⟨𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)⟩ : 𝑥 ∈ 𝑋}.

For 𝐴,𝐵 ∈ 𝐼𝐿𝐹𝑆(𝑋) we say that 𝐴 ⊆ 𝐵 if and only if 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) and 𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥)

for all 𝑥 ∈ 𝑋 . Also, 𝐴 ⊂ 𝐵 if and only if 𝐴 ⊆ 𝐵 and 𝐴 ̸= 𝐵.
For 𝐴 ∈ 𝐼𝐿𝐹𝑆(𝑋) and 𝛼, 𝛽 ∈ 𝐿 with 𝛼 ≤ 𝑁(𝛽), in analogy with the operator 𝐴(𝛼,𝛽) defined

by Atanassov for intuitionistic fuzzy sets in [2], we define here

𝐴(𝛼,𝛽) = {𝑥 ∈ 𝑋 : 𝜇𝐴(𝑥) ≥ 𝛼, 𝜈𝐴(𝑥) ≤ 𝛽}.

Then 𝐴(𝛼,𝛽) is called the (𝛼, 𝛽)-cut set of 𝐴. The support of an 𝐼𝐿𝐹𝑆 𝐴 is denoted by 𝐴* and is
defined as

𝐴* = {𝑥 ∈ 𝑋 : 𝜇𝐴(𝑥) > 0, 𝜈𝐴(𝑥) < 1}.

Definition 2.3. [11] Let 𝐴 = (𝜇𝐴, 𝜈𝐴) be an ILFS of 𝑋 and 𝑌 ⊆ 𝑋 . Then the intuitionistic
𝐿-fuzzy characteristic function 𝜒𝑌 = (𝜇𝜒𝑌

, 𝜈𝜒𝑌
) on 𝑌 is defined as

𝜇𝜒𝑌
(𝑦) =

⎧⎨⎩1, if 𝑦 ∈ 𝑌

0, otherwise
; 𝜈𝜒𝑌

(𝑦) =

⎧⎨⎩0, if 𝑦 ∈ 𝑌

1, otherwise.

Definition 2.4. [7, 11] Let 𝐴 ∈ 𝐼𝐿𝐹𝑆(𝑀). Then 𝐴 is called an intuitionistic 𝐿-fuzzy module
(𝐼𝐿𝐹𝑀) of 𝑀 if for all 𝑥, 𝑦 ∈ 𝑀, 𝑟 ∈ 𝑅, the following statements are satisfied:

(i) 𝜇𝐴(𝑥− 𝑦) ≥ 𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑦);

(ii) 𝜇𝐴(𝑟𝑥) ≥ 𝜇𝐴(𝑥);

(iii) 𝜇𝐴(𝜃) = 1;

(iv) 𝜈𝐴(𝑥− 𝑦) ≤ 𝜈𝐴(𝑥) ∨ 𝜈𝐴(𝑦);

(v) 𝜈𝐴(𝑟𝑥) ≤ 𝜈𝐴(𝑥);

(vi) 𝜈𝐴(𝜃) = 0.

The collection of all intuitionistic 𝐿-fuzzy modules of 𝑀 is denoted by 𝐼𝐹𝐿(𝑀). If
𝐴,𝐵 ∈ 𝐼𝐹𝐿(𝑀) such that 𝐵 ⊆ 𝐴, then 𝐵 is called an intuitionistic 𝐿-fuzzy submodule of 𝐴.
If 𝐿 is regular and 𝐴,𝐵 ∈ 𝐼𝐹𝐿(𝑀), then 𝐴*, 𝐵* are submodules of 𝑀 . Further we see that
(𝐴+𝐵)* = 𝐴* +𝐵* and (𝐴∩𝐵)* = 𝐴* ∩𝐵* (see [7]). Also, 𝐴* = {𝜃} if and only if 𝐴 = 𝜒{𝜃}

(see [13]). If 𝐴,𝐵 ∈ 𝐼𝐹𝐿(𝑀), then the direct sum of 𝐴 and 𝐵 is 𝐴+𝐵 provided 𝐴 ∩𝐵 = 𝜒{𝜃},
and this is denoted by 𝐴 ⊕ 𝐵. If 𝐴,𝐵,𝐶 ∈ 𝐼𝐹𝐿(𝑀) be such that 𝐶 = 𝐴 ⊕ 𝐵, then 𝐴,𝐵 are
called intuitionistic 𝐿-fuzzy direct summands of 𝐶.
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Definition 2.5. [13] Let 𝑀 be an 𝑅-module and 𝐴,𝐶 ∈ 𝐼𝐹𝐿(𝑀) be such that 𝜒{𝜃} ̸= 𝐶 ⊆ 𝐴.
Then𝐶 is called an intuitionistic𝐿-fuzzy essential submodule of𝐴 if𝐶∩𝐵 ̸= 𝜒{𝜃}, ∀𝐵 ∈ 𝐼𝐹𝐿(𝑀)

such that 𝜒{𝜃} ̸= 𝐵 ⊆ 𝐴. We denote this by writing 𝐶 E𝑒 𝐴.
In particular, when 𝐴 = 𝜒𝑀 . Then 𝐶 is called an intuitionistic 𝐿-fuzzy essential submodule

of 𝑀 , written as 𝐶 E𝑒 𝜒𝑀 or 𝐶 E𝑒 𝑀 , if 𝐶 ∩𝐵 ̸= 𝜒{𝜃}, ∀𝐵 ̸= 𝜒{𝜃} ∈ 𝐼𝐹𝐿(𝑀).

Proposition 2.6. [13] Let 𝑀 be an 𝑅-module and 𝐴,𝐶 ∈ 𝐼𝐹𝐿(𝑀) be such that 𝐶 E𝑒 𝐴. Then
𝐶* E𝑒 𝐴

*, but the converse is true when 𝐿 is regular.

Theorem 2.7. [13] Let 𝐴,𝐵,𝐶 ∈ 𝐼𝐹𝐿(𝑀) be such that 𝐶 ⊆ 𝐵 ⊆ 𝐴. Then 𝐶 E𝑒 𝐴 if and only if
𝐶 E𝑒 𝐵 and 𝐵 E𝑒 𝐴.

Theorem 2.8. [13] Let 𝐶1, 𝐶2, 𝐴1, 𝐴2 ∈ 𝐼𝐹𝐿(𝑀). If 𝐶1 E𝑒 𝐴1 and 𝐶2 E𝑒 𝐴2, then 𝐶1 ∩ 𝐶2 E𝑒

𝐴1 ∩ 𝐴2.

Corollary 2.9. [13] Let 𝐶1, 𝐶2, 𝐴 ∈ 𝐼𝐹𝐿(𝑀). If 𝐶1 E𝑒 𝐴 and 𝐶2 E𝑒 𝐴, then 𝐶1 ∩ 𝐶2 E𝑒 𝐴.

Theorem 2.10. [13] Let 𝐿 be a regular lattice and 𝐶1, 𝐶2, 𝐴1, 𝐴2 ∈ 𝐼𝐹𝐿(𝑀). If 𝐶𝑖 E𝑒 𝐴𝑖,
𝑖 = 1, 2. If 𝐶1 ∩ 𝐶2 = 𝜒{𝜃}, then 𝐴1 ∩ 𝐴2 = 𝜒{𝜃} and 𝐶1 ⊕ 𝐶2 E𝑒 𝐴1 ⊕ 𝐴2.

Corollary 2.11. [13] Let 𝐿 be a regular lattice and 𝐶1, 𝐶2, 𝐴 ∈ 𝐼𝐹𝐿(𝑀). If 𝐶𝑖 E𝑒 𝐴, 𝑖 = 1, 2. If
𝐶1 ∩ 𝐶2 = 𝜒{𝜃}, then 𝐶1 ⊕ 𝐶2 E𝑒 𝐴.

Theorem 2.12. [13] Let 𝐿 be a regular lattice and 𝐶,𝐴 ∈ 𝐼𝐹𝐿(𝑀) where 𝐶 ⊆ 𝐴. Let
𝑓 : 𝑁 → 𝑀 be a module homomorphism such that 𝑓(𝐵) ⊆ 𝐴 where 𝐵 ∈ 𝐼𝐹𝐿(𝑁). If 𝐶 E𝑒 𝐴,
then 𝑓−1(𝐶)E𝑒 𝐵.

Definition 2.13. [13] Let 𝑀 be an 𝑅-module and 𝐴,𝐵,𝐶 ∈ 𝐼𝐹𝐿(𝑀) be such that 𝐵 ⊆ 𝐴. Then
𝐶 is called an intuitionistic 𝐿-fuzzy complement of 𝐵 in 𝐴 if 𝐶 ⊆ 𝐴 and 𝐶 is maximal with the
property that 𝐵 ∩ 𝐶 = 𝜒{𝜃}. We write 𝐶 is complement of 𝐵 in 𝐴.

Theorem 2.14. [13] Let 𝐿 be a regular lattice and 𝑀 be an 𝑅-module. If 𝐶 is complement of 𝐵
in 𝐴, then 𝐶* is complement of 𝐵* in 𝐴*.

Remark 2.15. [13] The converse of the above theorem is not true. If for any 𝐴,𝐵,𝐶 ∈ 𝐼𝐹𝐿(𝑀)

the submodule 𝐶* is complement of 𝐵* in 𝐴*, then 𝐶 need not be complement of 𝐵 in 𝐴.

Definition 2.16. [13] Let 𝐴,𝐵 ∈ 𝐼𝐹𝐿(𝑀). Then 𝐵 is said to be a strictly proper intuitionistic
𝐿-fuzzy submodule of 𝐴 if 𝐵 ⊆ 𝐴 and 𝐵 ̸= 𝜒{𝜃} and 𝐴|𝐵* = 𝐵 and 𝐵* ⊆ 𝐴*. Also 𝐵 is said to
be a proper intuitionistic 𝐿-fuzzy submodule of 𝐴 if 𝐵 ⊆ 𝐴, 𝐵 ̸= 𝜒{𝜃} and 𝐵* ⊆ 𝐴*.

Definition 2.17. [14] 𝐴 ∈ 𝐼𝐹𝐿(𝑀) is said to be an intuitionistic 𝐿-fuzzy simple module if 𝐴 has
no proper intuitionistic 𝐿-fuzzy submodules.

Theorem 2.18. [14] Let 𝐿 be a regular lattice and 𝑀 be a module over ring 𝑅. Then 𝑀 is simple
if and only if 𝜒𝑀 is an intuitionistic 𝐿-fuzzy simple module.
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Lemma 2.19. Let 𝐿 be a regular lattice and 𝐵,𝐶,𝐷 ∈ 𝐼𝐹𝐿(𝑀) such that 𝐵 ⊆ 𝐶. Then

𝐶 ∩ (𝐷 +𝐵) = (𝐶 ∩𝐷) +𝐵.

Proof. Let 𝐴 = 𝐶 ∩ (𝐷 +𝐵). Then

𝐴* = [𝐶 ∩ (𝐷 +𝐵)]* = 𝐶* ∩ (𝐷* +𝐵*).

Since 𝐵 ⊆ 𝐶, so 𝐵* ⊆ 𝐶*. Now by the modular law

𝐶* ∩ (𝐷* +𝐵*) = (𝐶* ∩𝐷*) +𝐵*.

Thus
𝐴* = (𝐶* ∩𝐷*) +𝐵* = (𝐶 ∩𝐷)* +𝐵*.

Also, we get 𝐴 = (𝐶 ∩𝐷) +𝐵. Thus, the result follows.

3 Socle of an intuitionistic 𝐿-fuzzy submodule
In this section we study the concept of a socle of an intuitionistic 𝐿-fuzzy submodule of a module
and we analyse some of its properties.

Definition 3.1. If 𝐴 ∈ 𝐼𝐹𝐿(𝑀), then the socle of 𝐴, denoted by Soc(𝐴), is defined as the sum
of all intuitionistic 𝐿-fuzzy simple submodules of 𝐴. Thus Soc(𝐴) =

∑︀
𝐵𝑖, where 𝐵𝑖 is an

intuitionistic 𝐿-fuzzy simple submodule of 𝐴. If 𝐴 has no intuitionistic 𝐿-fuzzy simple submodule,
then Soc(𝐴) = 𝜒{𝜃}.

Theorem 3.2. If 𝐴 = Soc(𝐴), then 𝐴 has no proper intuitionistic 𝐿-fuzzy essential submodules.

Proof. Given 𝐴 = Soc(𝐴) =
∑︀

𝐵𝑖, where 𝐵𝑖 are intuitionistic 𝐿-fuzzy simple submodules of
𝐴, let 𝐶 be an intuitionistic 𝐿-fuzzy essential submodule of 𝐴. Then there exist intuitionistic
𝐿-fuzzy submodules 𝐵′

𝑖 of 𝐴 such that 𝐶 ∩𝐵𝑖 = 𝐵
′
𝑖 and 𝐵

′
𝑖 ̸= 𝜒{𝜃}.

Now
𝜇𝐵

′
𝑖
(𝑥) = 𝜇𝐶∩𝐵𝑖

(𝑥) = 𝜇𝐶(𝑥) ∧ 𝜇𝐵𝑖
(𝑥) ≤ 𝜇𝐶(𝑥)

and
𝜈𝐵′

𝑖
(𝑥) = 𝜈𝐶∩𝐵𝑖

(𝑥) = 𝜈𝐶(𝑥) ∨ 𝜈𝐵𝑖
(𝑥) ≥ 𝜈𝐶(𝑥)

imply that 𝐵′
𝑖 ⊆ 𝐶. Similarly, 𝐵′

𝑖 ⊆ 𝐵𝑖. Now 𝐵𝑖 is an intuitionistic 𝐿-fuzzy simple submodule
of 𝐴, so 𝐵

′
𝑖 ⊆ 𝐵𝑖 implies 𝐵

′
𝑖 = 𝐵𝑖. Also 𝐵

′
𝑖 ⊆ 𝐶 implies that 𝐶 contains all intuitionistic

𝐿-fuzzy simple submodules of 𝐴. Thus Soc(𝐴) ⊆ 𝐶. This gives 𝐴 ⊆ 𝐶. Thus 𝐴 = 𝐶, i.e.,
𝐴 is an essential submodule of itself. Hence 𝐴 has no proper intuitionistic 𝐿-fuzzy essential
submodules.

Theorem 3.3. If 𝐴 ∈ 𝐼𝐹𝐿(𝑀) and 𝐸 is the intersection of all intuitionistic 𝐿-fuzzy essential
submodules of 𝐴, then Soc(𝐴) ⊆ 𝐸.
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Proof. Let 𝐸 = ∩{𝐵𝑖 : 𝐵𝑖 E𝑒 𝐴}. Suppose 𝐵𝑖, 𝐶 ∈ 𝐼𝐹𝐿(𝑀) be such that 𝐶 is an intuitionistic
𝐿-fuzzy simple submodule of 𝐴 and 𝐵𝑖 E𝑒 𝐴. Then 𝐵𝑖 ∩ 𝐶 ̸= 𝜒{𝜃}. Also 𝐵𝑖 ∩ 𝐶 ⊆ 𝐶 and 𝐶

being an intuitionistic 𝐿-fuzzy simple submodule of 𝐴, we have 𝐵𝑖 ∩ 𝐶 = 𝐶.
Now

𝜇𝐶(𝑥) = 𝜇𝐵𝑖∩𝐶(𝑥) = 𝜇𝐵𝑖
(𝑥) ∧ 𝜇𝐶(𝑥) ≤ 𝜇𝐵𝑖

(𝑥)

and
𝜈𝐶(𝑥) = 𝜈𝐵𝑖∩𝐶(𝑥) = 𝜈𝐵𝑖

(𝑥) ∨ 𝜈𝐶(𝑥) ≥ 𝜈𝐵𝑖
(𝑥).

Thus 𝐶 ⊆ 𝐵𝑖. This implies that if 𝐶 is an intuitionistic 𝐿-fuzzy simple submodule of 𝐴, then 𝐶 is
contained in every intuitionistic 𝐿-fuzzy essential submodule 𝐵𝑖 of 𝐴. Hence Soc(𝐴) ⊆ 𝐸.

Theorem 3.4. Let 𝐿 be a regular lattice and 𝐴 ∈ 𝐼𝐹𝐿(𝑀). Let 𝐸 be the intersection of
all intuitionistic 𝐿-fuzzy essential submodules of 𝐴. If every non-zero intuitionistic 𝐿-fuzzy
submodule of 𝐸 is a direct summand of 𝐸, then every non-zero intuitionistic 𝐿-fuzzy submodule
of 𝐸 contains an intuitionistic 𝐿-fuzzy simple submodule of 𝐴.

Proof. Let 𝐸 = ∩{𝐵𝑖 : 𝐵𝑖 E𝑒 𝐴}. Suppose 𝐶 (̸= 𝜒{𝜃}) ∈ 𝐼𝐹𝐿(𝑀) be such that 𝐶 ⊆ 𝐸. We
consider F = {𝐹 : 𝐹 ⊆ 𝐶,𝐹 ∈ 𝐼𝐹𝐿(𝑀)}. By Zorn’s Lemma there exists a maximal element
𝐵 in F such that 𝐵 ⊆ 𝐶 and 𝐵 ∈ 𝐼𝐹𝐿(𝑀). By the given condition 𝐸 = 𝐵 ⊕ 𝐵

′ , for some
𝐵

′ ∈ 𝐼𝐹𝐿(𝑀). Now

𝐶 = 𝐶 ∩ 𝐸 = 𝐶 ∩ (𝐵 ⊕𝐵
′
) = 𝐵 ⊕ (𝐶 ∩𝐵

′
)

by Lemma (2.19).
If 𝐶 ∩ 𝐵

′ is not an intuitionistic 𝐿-fuzzy simple submodule, then it contains a non-zero
intuitionistic 𝐿-fuzzy submodule 𝐷 of 𝑀 . So there exists 𝐷′ ∈ 𝐼𝐹𝐿(𝑀) such that 𝐸 = 𝐷 ⊕𝐷

′ .
Also

𝐶 ∩𝐵
′
= (𝐶 ∩𝐵

′
) ∩ 𝐸 = (𝐶 ∩𝐵

′
) ∩ (𝐷 ⊕𝐷

′
) = 𝐷

′ ⊕ (𝐶 ∩𝐵
′ ∩𝐷).

This implies
𝐵 ⊕ (𝐶 ∩𝐵

′
) = 𝐵 ⊕𝐷

′ ⊕ (𝐶 ∩𝐵
′ ∩𝐷) = 𝐵 ⊕𝐷.

Thus 𝐶 ∩𝐵
′
= 𝐷, which is a contradiction. Therefore 𝐶 ∩𝐵

′ is an intuitionistic 𝐿-fuzzy simple
submodule of 𝐴. Thus 𝐶 contains an intuitionistic 𝐿-fuzzy simple submodule 𝐶 ∩𝐵

′ of 𝐴. This
proves the result.

Theorem 3.5. Let 𝐿 be a regular lattice and 𝐴 ∈ 𝐼𝐹𝐿(𝑀). If 𝐸 is the intersection of all
intuitionistic 𝐿-fuzzy essential submodules of 𝐴, then 𝐸 ⊆ Soc(𝐴).

Proof. Firstly, we show that every intuitionistic𝐿-fuzzy submodule of𝐸 is a direct summand. Let
𝐶 be an intuitionistic 𝐿-fuzzy submodule of 𝐸. Then 𝐶 is an intuitionistic 𝐿-fuzzy submodule of
𝐴. So there exists an intuitionistic 𝐿-fuzzy submodule 𝐵 such that 𝐵 is a complement of 𝐶 in 𝐴,
i.e., 𝐶 ∩𝐵 = 𝜒{𝜃}. Let 𝐶 ′ ∈ 𝐼𝐹𝐿(𝑀) be such that 𝐶 ′ ∩ (𝐶 ⊕𝐵) = 𝜒{𝜃}.

Now 𝐶 ⊆ 𝐶 ⊕𝐵 implies 𝐶 ∩𝐶
′
= 𝜒{𝜃}. Similarly 𝐵 ∩𝐶

′
= 𝜒{𝜃}. If 𝐶 ∩ (𝐵 ⊕𝐶

′
) ̸= 𝜒{𝜃},

then there exist a non-zero element 𝑥 in 𝑀 such that 𝑥 ∈ [𝐶 ∩ (𝐵 ⊕ 𝐶
′
)]* = 𝐶* ∩ (𝐵* ⊕ 𝐶

′*
),

i.e., 𝜇𝐶(𝑥) > 0, 𝜈𝐶(𝑥) < 1 and 𝜇𝐵⊕𝐶
′ (𝑥) > 0, 𝜈𝐵⊕𝐶

′ (𝑥) < 1. This implies that there exist
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unique 𝑦, 𝑧 ∈ 𝑀 such that 𝑥 = 𝑦 + 𝑧 and 𝜇𝐵(𝑦) ∧ 𝜇𝐶
′ (𝑧) > 0 and 𝜈𝐵(𝑦) ∨ 𝜈𝐶′ (𝑧) < 1, where

𝜇𝐵(𝑦) > 0, 𝜇𝐶′ (𝑧) > 0 and 𝜈𝐵(𝑦) < 1, 𝜈𝐶′ (𝑧) < 1. Thus 𝑥 = 𝑦 + 𝑧 with 𝑥 ∈ 𝐶*, 𝑦 ∈ 𝐵* and
𝑧 ∈ 𝐶

′* . Also 𝑧 is a non-zero element of 𝑀 , for otherwise it implies that 𝑥 is a zero element
of 𝑀 .

Now 𝑧 = 𝑥− 𝑦 ∈ 𝐶
′* ∩ (𝐵*⊕𝐶*) = [𝐶

′ ∩ (𝐵⊕𝐶)]*. This shows that 𝐶 ′ ∩ (𝐵⊕𝐶) ̸= 𝜒{𝜃},
a contradiction. Thus 𝐶 ∩ (𝐵 ⊕ 𝐶

′
) = 𝜒{𝜃}. By the maximality of 𝐵 we have 𝐵 ⊕ 𝐶

′
= 𝐵.

Now
𝜇𝐵(𝑥) = 𝜇𝐵⊕𝐶′ (𝑥) ≥ 𝜇𝐵(0) ∧ 𝜇𝐶′ (𝑥) = 𝜇𝐶′ (𝑥)

and
𝜈𝐵(𝑥) = 𝜈𝐵⊕𝐶′ (𝑥) ≤ 𝜈𝐵(0) ∨ 𝜈𝐶′ (𝑥) = 𝜈𝐶′ (𝑥).

Thus 𝐶 ′ ⊆ 𝐵 and hence 𝜒{𝜃} = 𝐶
′ ∩𝐵 = 𝐶

′ . This proves 𝐶 ⊕𝐵 E𝑒 𝐴. Thus 𝐸 ⊆ 𝐶 ⊕𝐵. This
implies 𝐸 = 𝐸 ∩ (𝐶 ⊕ 𝐵) = 𝐸 ⊕ (𝐶 ∩ 𝐵), since 𝐶 ⊆ 𝐸 and 𝐶 ∩ (𝐸 ∩ 𝐵) = 𝜒{𝜃}. Thus every
intuitionistic 𝐿-fuzzy submodule of 𝐸 is a direct summand.

Let 𝐷 be the sum of all intuitionistic 𝐿-fuzzy simple submodules of 𝐸. Then 𝐷 is a direct
summand of 𝐸 so there exists 𝐷′ ∈ 𝐼𝐹𝐿(𝑀) such that 𝐸 = 𝐷 ⊕ 𝐷

′ . If 𝐷′ ̸= 𝜒{𝜃}, then there
exists an intuitionistic 𝐿-fuzzy simple submodule 𝐺 of 𝐷′ . This gives 𝐺 ⊆ 𝐷, a contradiction.
Thus 𝐷′

= 𝜒{𝜃}. This implies 𝐸 = 𝐷. Hence 𝐸 ⊆ Soc(𝐴).

Using Theorem (3.3), Theorem (3.4) and Theorem (3.5), we get the following theorem.

Theorem 3.6. Let 𝐿 be a regular lattice and 𝐴 ∈ 𝐼𝐹𝐿(𝑀). If 𝐸 is the intersection of all
intuitionistic 𝐿-fuzzy essential submodules of 𝐴, then Soc(𝐴) = 𝐸.

Theorem 3.7. Let 𝐿 be a regular lattice and 𝑓 : 𝑁 → 𝑀 be a module homomorphism. If
𝐴 ∈ 𝐼𝐹𝐿(𝑀) and 𝐵 ∈ 𝐼𝐹𝐿(𝑁) such that 𝑓(𝐵) ⊆ 𝐴, then 𝑓−1(Soc(𝐴)) ⊆ Soc(𝐵).

Proof. This follows immediately by using Theorem (3.6), Theorem (2.12) and Corollary (2.9).

Theorem 3.8. Let 𝐿 be a regular lattice and 𝐴,𝐴1, 𝐴2 ∈ 𝐼𝐹𝐿(𝑀) such that 𝐴1, 𝐴2 ⊆ 𝐴 and
𝐴 = 𝐴1 ⊕ 𝐴2. Then Soc(𝐴) = Soc(𝐴1)⊕ Soc(𝐴2).

Proof. This follows immediately by using Theorem (3.6) and Corollaries (2.9) and (2.11).

Theorem 3.9. Let 𝐿 be a regular lattice and 𝐴,𝐵,𝐶 ∈ 𝐼𝐹𝐿(𝑀) such that 𝐴 ⊆ 𝐵 ⊆ 𝐶. If 𝐴 is
a direct summand of 𝐶, then 𝐴 is also a direct summand of 𝐵.

Proof. Since 𝐴 is a direct summand of 𝐶, there exists 𝐴
′ ∈ 𝐼𝐹𝐿(𝑀) with 𝐴

′ ⊆ 𝐶 such that
𝐴+ 𝐴

′
= 𝐶 and 𝐴 ∩ 𝐴

′
= 𝜒{𝜃}. Now (𝐴+ 𝐴

′
) ∩ 𝐵 = 𝐵. Then by using Lemma (2.19) we get

𝐴 + (𝐴
′ ∩ 𝐵) = 𝐵. Also 𝐴 ∩ (𝐴

′ ∩ 𝐵) = 𝜒{𝜃}. This implies that 𝐴 is also a direct summand
of 𝐵.

Definition 3.10. If 𝐴 ∈ 𝐼𝐹𝐿(𝑀) and 𝐼𝐹𝐿(𝐴) = {𝐶 ⊆ 𝐴 : 𝐶 ∈ 𝐼𝐹𝐿(𝑀)}. Then 𝐼𝐹𝐿(𝐴) is
intuitionistic 𝐿-fuzzy complemented if for all 𝐶 ⊆ 𝐴,𝐶 ∈ 𝐼𝐹𝐿(𝑀) there exists 𝐶

′ ∈ 𝐼𝐹𝐿(𝑀)

such that 𝐶 ∩ 𝐶
′
= 𝜒{𝜃} and 𝐶 + 𝐶

′
= 𝐴. In other words, 𝐼𝐹𝐿(𝐴) is intuitionistic 𝐿-fuzzy

complemented if every element of 𝐼𝐹𝐿(𝐴) is a direct summand of 𝐴.
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Theorem 3.11. Let 𝐿 be a regular lattice and 𝐴 ∈ 𝐼𝐹𝐿(𝑀). If 𝐴 = Soc(𝐴), then 𝐼𝐹𝐿(𝐴) is
intuitionistic𝐿-fuzzy complemented and for any𝐶 ∈ 𝐼𝐹𝐿(𝐴), 𝐼𝐹𝐿(𝐶) is also intuitionistic𝐿-fuzzy
complemented.

Proof. Since 𝐴 = Soc(𝐴), then by Theorem (3.2) 𝐴 has no proper intuitionistic 𝐿-fuzzy essential
submodule. Let 𝐶 be any intuitionistic 𝐿-fuzzy submodule of 𝐴. If 𝐵 is a relative complement
for 𝐶 in 𝐴, then as Theorem (3.5) we get 𝐵⊕𝐶E𝑒𝐴. But given that 𝐴 has no proper intuitionistic
𝐿-fuzzy essential submodule, so 𝐵 ⊕ 𝐶 = 𝐴 and 𝐵 being a relative complement for 𝐶, we get
𝐵 ∩ 𝐶 = 𝜒{𝜃}. Hence 𝐼𝐹𝐿(𝐴) is intuitionistic 𝐿-fuzzy complemented.

Let 𝐵 ∈ 𝐼𝐹𝐿(𝑀) and 𝐵 ⊆ 𝐶. Then 𝐵 ⊆ 𝐴. As 𝐼𝐹𝐿(𝐴) is intuitionistic 𝐿-fuzzy
complemented, so there exists 𝐹 ∈ 𝐼𝐹𝐿(𝑀) such that 𝐵 + 𝐹 = 𝐴 and 𝐵 ∩ 𝐹 = 𝜒{𝜃}.

Now
(𝐶 ∩ 𝐹 ) ∩𝐵 = 𝐶 ∩ (𝐹 ∩𝐵) = 𝐶 ∩ 𝜒{𝜃} = 𝜒{𝜃}.

Also by Lemma (2.8),

(𝐶 ∩ 𝐹 ) +𝐵 = 𝐶 ∩ (𝐹 +𝐵) = 𝐶 ∩ 𝐴 = 𝐶.

Hence there exists 𝐶 ∩𝐹 (⊆ 𝐶) ∈ 𝐼𝐹𝐿(𝑀) such that (𝐶 ∩𝐹 )∩𝐵 = 𝜒{𝜃} and (𝐶 ∩𝐹 )+𝐵 = 𝐶.
Thus, 𝐼𝐹𝐿(𝐶) is intuitionistic 𝐿-fuzzy complemented.

4 Conclusion
In this paper, we studied the concept of a socle of an intuitionistic fuzzy submodule of a module
in the lattice setting. It is proved that if the socle of an intuitionistic 𝐿-fuzzy submodule 𝐴 of an
𝑅-module 𝑀 is 𝐴, then 𝐴 has no proper intuitionistic 𝐿-fuzzy essential submodules. Further, we
showed that if 𝐸 is the intersection of all intuitionistic 𝐿-fuzzy essential submodules of 𝐴, then
every non-zero intuitionistic 𝐿-fuzzy submodule of 𝐸 contains a simple intuitionistic 𝐿-fuzzy
submodule of 𝐸. Using this result, we showed that when 𝐿 is regular, then Soc(𝐴) = 𝐸.
Apart from this we have also evaluated the socle of a direct sum of intuitionistic 𝐿-fuzzy
submodules. Further, we showed that if 𝐴 = Soc(𝐴) and 𝐼𝐹𝐿(𝐴) is intuitionistic 𝐿-fuzzy
complemented, then for any 𝐶 ∈ 𝐼𝐹𝐿(𝐴), 𝐼𝐹𝐿(𝐶) is also intuitionistic 𝐿-fuzzy complemented.
Finally, the investigations on the relations between the socle of intuitionistic 𝐿-fuzzy submodules
and intuitionistic 𝐿-fuzzy prime submodules will provide various exciting results.
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