ON INTUITIONISTIC FUZZY SETS OVER UNIVERSES WITH HIERARCHICAL STRUCTURES

P. Chountas ${ }^{1}$ and K. Atanassov ${ }^{2}$
${ }^{1}$ HSCS - University of Westminster, London, HA1 3TP, UK
e-mail: chountp@wmin.ac.uk
${ }^{2}$ CLBME - Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
e-mail: krat@bas.bg

1 Introduction

Let E be a fixed universe and let A be an Intuitionistic Fuzzy Set (IFS, see [1] over E.
Let F be another universe and let the set E be an IFS over F having the form:

$$
E=\left\{\left\langle y, \mu_{E}(y), \nu_{E}(y)\right\rangle \mid y \in F\right\} .
$$

Therefore the element $x \in E$ has the form (see [2]):

$$
x=\left\langle y, \mu_{E}(y), \nu_{E}(y)\right\rangle,
$$

i.e., $x \in F \times[0,1] \times[0,1]$,

$$
\begin{aligned}
A= & \left\{\left\langle\left\langle y, \mu_{E}(y), \nu_{E}(y)\right\rangle, \mu_{A}\left(\left\langle y, \mu_{E}(y), \nu_{E}(y)\right\rangle\right), \nu_{A}\left(\left\langle y, \mu_{E}(y), \nu_{E}(y)\right\rangle\right)\right\rangle \mid\right. \\
& \left.\left\langle y, \mu_{E}(y), \nu_{E}(y)\right\rangle \in E\right\}
\end{aligned}
$$

and there exists a bijection between the $E-$ and F - elements of x - and y-types, respectively.

Thus we can use the symbol " y " for both y - and x-elements.
Let A / E stand for " A is an IFS over E ".
If the degrees of membership and non-membership of an element y to a set A in the frames of a universe E are $\mu_{A}(y)$ and $\nu_{A}(y)$ and the element $\left\langle y, \mu_{A}(y), \nu_{A}(y)\right\rangle$ has degrees of
membership and non-membership to the set E within the universe F are $\mu_{E}(y)$ and $\nu_{E}(y)$, then we define:

$$
\begin{equation*}
A=\left\{\left\langle y, \mu_{E}(y) \cdot \mu_{A}(y), \nu_{E}(y) \cdot \nu_{A}(y)\right\rangle \mid y \in F\right\} . \tag{1}
\end{equation*}
$$

Obviously, from A / E and B / E follows that the sets A and B have equal y-elements.
All intuitionistic fuzzy operations, relations and operators can be transformed directly over the new objects. For example, the most general case, when the relations $A / E, B / F$, $E / G, F / G$ hold, the IFS $A \cap B$ over the universe G has the form:

$$
\left\{\left\langle y, \min \left(\mu_{E}(y) \cdot \mu_{A}(y), \mu_{F}(y) \cdot \mu_{B}(y)\right), \max \left(\nu_{E}(y) \cdot \nu_{A}(y), \nu_{F}(y) \cdot \nu_{B}(y)\right)\right\rangle \mid y \in G\right\} .
$$

2 Main results

When the universe is ordered, e.g., by relation \leq the set A is called in [3] an "IFS over an universe with hierarchical structure (H-IFS)".

Here we shall extend the concept of H-IFS transforming some ideas and results from [1, 2].

First, we shall start with en example. Let E be a finite universe with the form

$$
E=\left\{e_{1}, e_{2}, e_{3},\left\{e_{1}, e_{2}\right\},\left\{e_{1}, e_{3}\right\},\left\{e_{1}, e_{2},\left\{e_{1}, e_{3}\right\}\right\}\right\}
$$

Therefore, the IFS A over E will have the form

$$
\begin{gather*}
A=\left\{\left\langle e_{1}, \mu_{A}\left(e_{1}\right), \nu_{A}\left(e_{1}\right)\right\rangle,\left\langle e_{2}, \mu_{A}\left(e_{2}\right), \nu_{A}\left(e_{2}\right)\right\rangle,\left\langle e_{3}, \mu_{A}\left(e_{3}\right), \nu_{A}\left(e_{3}\right)\right\rangle,\right. \\
\left\langle\left\{e_{1}, e_{2}\right\}, \mu_{A}\left(\left\{e_{1}, e_{2}\right\}\right), \nu_{A}\left(\left\{e_{1}, e_{2}\right\}\right)\right\rangle,\left\langle\left\{e_{1}, e_{3}\right\}, \mu_{A}\left(\left\{e_{1}, e_{3}\right\}\right), \nu_{A}\left(\left\{e_{1}, e_{3}\right\}\right)\right\rangle, \\
\left\langle\left\{e_{1}, e_{2},\left\{e_{1}, e_{3}\right\}\right\}, \mu_{A}\left(\left\{e_{1}, e_{2},\left\{e_{1}, e_{3}\right\}\right\}\right), \nu_{A}\left(\left\{e_{1}, e_{2},\left\{e_{1}, e_{3}\right\}\right\}\right\rangle\right\} . \tag{2}
\end{gather*}
$$

Obviously,

$$
\operatorname{card}(E)=6
$$

Let the other set has the form

$$
E_{1}=\left\{e_{1}, e_{2}, e_{3},\left\{f_{1}, f_{2}\right\},\left\{f_{1}\right\},\left\{g_{1}, g_{2},\left\{g_{1}, g_{3}\right\}\right\}\right\}
$$

We can tell that elements e_{1}, e_{2}, e_{3} are "elements from first level", elements $f_{1}, f_{2}, g_{1}, g_{2}$ - "elements from second level" and elements g_{1}, g_{3} - "elements from third level".

Of course, one element can be element from two or more different types. For example for set E objects e_{1}, e_{2}, e_{3} are elements from each one of the three types.

If there is an order between some of the elements of E, e.g., if for $i=1,2,3: e_{i}=i$, this order $(\leq$ or $<)$ cannot be extend over the rest E-elements. If the order is \subset, it will be valid for fourth and sixth elements of E, but will net be possible for the rest E-elements. Finally, the order \in will be valid, e.g., for the fifth and sixth e-elements, but not, e.g. for the third and sixth elements.

Now, for H-IFS E that has n levels and for every natural number $i \leq n$ we can introduce set support $_{i}(E)$ that contains all E-elements that are from i-th level and that are not sets of elements of $(i+1)$-th level. Moreover,

$$
\operatorname{support}(E)=\underset{i \leq n}{\cup} \quad \operatorname{support}_{i}(E)
$$

On the other hand we see that the e-elements are from different hierarchical levels and this is our reason to use the name of H-IFS for such sets. Obviously, this form of H-IFS is an extension of the first one.

We see that for the above set E with $\operatorname{card}(E)=6$: $\operatorname{card}(\operatorname{support}(E))=3$, while for set E_{1} with the same cardinality $\left(\operatorname{card}\left(E_{1}\right)=6\right) \operatorname{card}\left(\operatorname{support}\left(E_{1}\right)\right)=8$. Therefore, in the present case the bijection from [2] is not valid.

In [1] is formulated and proved (for the bijective case) following
Theorem 1.15.1: If $A / E, E / F$ and F / G, then:
(a) $A=\left\{\left\langle y, \mu_{F}(y) \cdot \mu_{E}(y) \cdot \mu_{A}(y), \nu_{F}(y) \cdot \nu_{E}(y) \cdot \nu_{A}(y)\right\rangle / y \in G\right\}$,
(b) $A /(E / F)=(A / E) / F$.

As it is noted in [1], all the above results can be transformed for the case of ordinary fuzzy sets, as follows: if A is a fuzzy set over universe E and E is a fuzzy set over universe F, then A is a fuzzy set over universe F of the form:

$$
A=\left\{\left\langle y, \mu_{E}(y) \cdot \mu_{A}(y)\right\rangle \mid y \in F\right\}
$$

where μ_{A} and μ_{E} are degrees of membership in the above sense.
Let E be a finite or infinite set and let for each its element $e: \mu_{A}(e)$ and $\nu_{A}(e)$ exist. By analogy with (1) we can construct the set $A / E / \operatorname{support}(E)$. Extending the idea from [2],
already we can use not only the multiplicative form of presentation of A in F, as it is in (1), but at least three other forms, that we will mention for the example with IFS A from (2), as follows
$A / E[$ optimistic $] s u p p o r t(E)=\left\{\left\langle e_{1}, \mu_{A}\left(e_{1}\right), \nu_{A}\left(e_{1}\right)\right\rangle,\left\langle e_{2}, \mu_{A}\left(e_{2}\right), \nu_{A}\left(e_{2}\right)\right\rangle,\left\langle e_{3}, \mu_{A}\left(e_{3}\right), \nu_{A}\left(e_{3}\right)\right\rangle\right.$,

$$
\begin{aligned}
& \left\langle\left\{e_{1}, e_{2}\right\}, \max \left(\mu_{A}\left(e_{1}\right), \mu_{A}\left(e_{2}\right)\right), \min \left(\nu_{A}\left(e_{1}\right), \nu_{A}\left(e_{2}\right)\right)\right\rangle, \\
& \left\langle\left\{e_{1}, e_{3}\right\}, \max \left(\mu_{A}\left(e_{1}\right), \mu_{A}\left(e_{3}\right)\right), \min \left(\nu_{A}\left(e_{1}\right), \nu_{A}\left(e_{3}\right)\right)\right\rangle,
\end{aligned}
$$

$$
\left.\left\langle\left\{e_{1}, e_{2},\left\{e_{1}, e_{3}\right\}\right\}, \max \left(\mu_{A}\left(e_{1}\right), \mu_{A}\left(e_{2}\right), \mu_{A}\left(e_{3}\right)\right), \min \left(\nu_{A}\left(e_{1}\right), \nu_{A}\left(e_{2}\right), \nu_{A}\left(e_{3}\right)\right)\right\rangle\right\}
$$

$A / E[$ pessimistic $]$ support $(E)=\left\{\left\langle e_{1}, \mu_{A}\left(e_{1}\right), \nu_{A}\left(e_{1}\right)\right\rangle,\left\langle e_{2}, \mu_{A}\left(e_{2}\right), \nu_{A}\left(e_{2}\right)\right\rangle,\left\langle e_{3}, \mu_{A}\left(e_{3}\right), \nu_{A}\left(e_{3}\right)\right\rangle\right.$,

$$
\begin{array}{r}
\left\langle\left\{e_{1}, e_{2}\right\}, \min \left(\mu_{A}\left(e_{1}\right), \mu_{A}\left(e_{2}\right)\right), \max \left(\nu_{A}\left(e_{1}\right), \nu_{A}\left(e_{2}\right)\right)\right\rangle, \\
\left\langle\left\{e_{1}, e_{3}\right\}, \min \left(\mu_{A}\left(e_{1}\right), \mu_{A}\left(e_{3}\right)\right), \max \left(\nu_{A}\left(e_{1}\right), \nu_{A}\left(e_{3}\right)\right)\right\rangle, \\
\left.\left\langle\left\{e_{1}, e_{2},\left\{e_{1}, e_{3}\right\}\right\}, \min \left(\mu_{A}\left(e_{1}\right), \mu_{A}\left(e_{2}\right), \mu_{A}\left(e_{3}\right)\right), \max \left(\nu_{A}\left(e_{1}\right), \nu_{A}\left(e_{2}\right), \nu_{A}\left(e_{3}\right)\right)\right\rangle\right\}
\end{array}
$$

$A / E[$ averrage $]$ support $(E)=\left\{\left\langle e_{1}, \mu_{A}\left(e_{1}\right), \nu_{A}\left(e_{1}\right)\right\rangle,\left\langle e_{2}, \mu_{A}\left(e_{2}\right), \nu_{A}\left(e_{2}\right)\right\rangle,\left\langle e_{3}, \mu_{A}\left(e_{3}\right), \nu_{A}\left(e_{3}\right)\right\rangle\right.$,

$$
\begin{gathered}
\left\langle\left\{e_{1}, e_{2}\right\}, \frac{\mu_{A}\left(e_{1}\right)+\mu_{A}\left(e_{2}\right)}{2}, \frac{\nu_{A}\left(e_{1}\right)+\nu_{A}\left(e_{2}\right)}{2}\right\rangle, \\
\left\langle\left\{e_{1}, e_{3}\right\}, \frac{\mu_{A}\left(e_{1}\right)+\mu_{A}\left(e_{3}\right)}{2}, \frac{\nu_{A}\left(e_{1}\right)+\nu_{A}\left(e_{3}\right)}{2}\right\rangle, \\
\left\langle\left\{e_{1}, e_{2},\left\{e_{1}, e_{3}\right\}\right\}, \frac{\left.\left.\mu_{A}\left(e_{1}\right)+\mu_{A}\left(e_{2}\right)+\frac{\mu_{A}\left(e_{1}\right)+\mu_{A}\left(e_{3}\right)}{2}, \frac{\nu_{A}\left(e_{1}\right)+\nu_{A}\left(e_{2}\right)+\frac{\nu_{A}\left(e_{1}\right)+\nu_{A}\left(e_{3}\right)}{2}}{2}\right\rangle\right\}}{=\left\{\left\langle e_{1}, \mu_{A}\left(e_{1}\right), \nu_{A}\left(e_{1}\right)\right\rangle,\left\langle e_{2}, \mu_{A}\left(e_{2}\right), \nu_{A}\left(e_{2}\right)\right\rangle,\left\langle e_{3}, \mu_{A}\left(e_{3}\right), \nu_{A}\left(e_{3}\right)\right\rangle,\right.}\right. \\
\left\langle\left\{e_{1}, e_{2}\right\}, \frac{\mu_{A}\left(e_{1}\right)+\mu_{A}\left(e_{2}\right)}{2}, \frac{\nu_{A}\left(e_{1}\right)+\nu_{A}\left(e_{2}\right)}{2}\right\rangle, \\
\left\langle\left\{e_{1}, e_{3}\right\}, \frac{\mu_{A}\left(e_{1}\right)+\mu_{A}\left(e_{3}\right)}{2}, \frac{\nu_{A}\left(e_{1}\right)+\nu_{A}\left(e_{3}\right)}{2}\right\rangle, \\
\left.\left\langle\left\{e_{1}, e_{2},\left\{e_{1}, e_{3}\right\}\right\}, \frac{3 \mu_{A}\left(e_{1}\right)+\mu_{A}\left(e_{2}\right)+\frac{\mu_{A}\left(e_{1}\right)+\mu_{A}\left(e_{3}\right)}{2}}{2}, \frac{\nu_{A}\left(e_{1}\right)+\nu_{A}\left(e_{2}\right)+\frac{\nu_{A}\left(e_{1}\right)+\nu_{A}\left(e_{3}\right)}{2}}{2}\right\rangle\right\}
\end{gathered}
$$

The following assertion is valid
Theorem: For each IFS A over E

$$
A / E[\text { pessimistic }] \text { support }(E) \subset A / E[\text { averrage }] \operatorname{support}(E) \subset A / E[\text { optimistic }] \text { support }(E) \text {. }
$$

References

[1] K. Atanassov, Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
[2] Atanassov K., Remark on the intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 51, 1992, No. 1, 117-118.
[3] Chountas, P., Representation of Null Values with the Aid H-IFS, Notes on IFS, Vol. 13, 2007, No. 1, 20-33.

