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Abstract: On the family of IF sets [1] some elementary functions has been studied in [2, 3] as
well as limit and continuity [4, 5]. In the present article we define derivation and with respect to
the notion the Lagrange mean value theorem is formulated and proved.
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1 IF-sets

IF-sets have been introduced in [1] as a natural generalization of fuzzy sets with remarkable
applications. Given a set {2 an IF set is a pair of functions (membership or non-membership resp.)

A= (MA7VA>
such that
Ha, VA - Q— [071}7,UA+VA <1.

Denote by F the family of all [F-sets. On F two binary operations &, ® and one unary operation
— are defined:
A® B = (min(pua + pup, 1), max(va + vg — 1,0)),

A® B = (max(pua + pup — 1,0), min(va + vp, 1)),
—-A = (1—,[LA71—UA).



Further a partial ordering on F is given by
A< B <= pua < pup,va > vp.

It is not difficult to construct an additive group G O F with an ordering such that G is an
lattice ordered group, where

A+ B=(pua+ pup,va+vg—1)
with the neutral element 0 = (0, 1) and
A< B <= pua < pup,va > vp.
Lattice operations are given by
ANB = (pua A pug,vaVuvg),

AV B = (uaV ug,va Avg),

Evidently
A—B= (MA—/LB,I/A—VB—i‘l).

The operations on F can be derived from operations on G if we use the unit u = (1q, 0g):
A® B=(A+ B) Au,
A®GB=(A+B—-u) V0,
—“A=u—A.
On our investigations also the following two operations will be used:

A.B = (papp, 1 — (1 —va)(1 —vp)) =

= (Uapp,Va + Vg — VaVB),

and if ug > 0, < 1, then

A 1—vy
B — VB

Suf IS

2 Differentiation
First we present a motivation. In [5] a real function f has been considered such that

[tha, Bl U lvp, va] C Domf,

where A < B. Then the function f : [A,.B] — R? is defined by

F(A) = (f(pa), 1 = f(1 = va)).



Compute
X_XO = (IUX _MXoayX_VX0+1)

FX) = f(Xo) = (flux), 1 = f(1 —vx)) = (fuxo)s 1 = f(1 = vxy)) =
= (f(nx) = Fluxo), 1 = f(L=wx) = (1= f(L —wx)) + 1) =
= (f(ux) = flpxo), F(L = vxo) = fF( —vx) +1).

Therefore

J(X) = [(Xo)  flux) — flux,)

. L) = fO =) 1)

X — Xp Hx — Hx, 1 —(vx —vx, +1)
(f(MX) —flux) | fO—vx) = f(A - VXO))
Mx — X, 7 Vx — VXo '

The above computation leads to the following definition.
Definition. Let f'(x) exists whenever © = pia(u) or z = 1 — v4(v) for some u,v € €. Then
we define

FI(A) = (f'(pa), 1 = f'(1 = va)).
Theorem. If f is differentiable in X, € G, then f is continuous in Xj.

Proof. By Theorem 1 of [5] f is continuous on [A,B] if and only if f is continuous on 114, 5]
and [vp, v4]. Hence if f is differentiable, then f is differentiable. Therefore f is continuous, and

f is continuous by [5].

3 Lagrange mean value theorem

Theorem. Let f be continuous on [A, B], differentiable on (A, B). Then there exists C' € (A, B)
such that

f(B) = f(A) = [(C)(B — A).
Proof. By the definition

F(B) = f(A) = (f(up). 1 = f(1 —vp)) = (f(pa), 1 — f(1 —va)) =
= (f(uB) = f(pa), fF(A =va) = f(1 —vp) +1).
Fix w € Qand take b € pp(w),a € wa(w). Then there exists ¢ € (a, b) such that
f(b) = f(a) = f'(c)(b - a).
Define pic : 2 — R by the equality
MC(W) = ¢,
hence we obtain py < e < pup, and

f(u) = f(pa) = f'(ue)(ns — pa).
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Similarly v¢ : 2 — R can be defined suchthat 1 —vp <1 —vo <1 — vy, and

fA=va) = f(1=vp) = f(1 —vo)(1 —va— (1 —vp)) =

= f'(1 —ve)(vg — va).

Define C' = (uc, ve). Then g < pe < pp,va > ve > vp, hence A < C' < B. Moreover

(@) = (f'(pe, 1= f/(1 —ve)).

Therefore

F(B) = f(A) = (f(u) — f(pa), f(L—va) = f(1—vp) +1) =

= (f'(nc) (s — pa), f'(1 = vo)(ve —va) + 1).
On the other hand
F(C)B = A) = (f'(pe),1 = f'(01 = ve)) (s — pra,vp —va+1) =
= (f'(pe)(pp —pa), 1 = (1= (1= f/(1=ve))(1 = (vg —va+1))) =
= (f'(ue)(ps — pa), 1 = f'(1 —ve)(va —vp)) =

= (f"(pe)(ps — pa), J'(0 — vo)(ve — va) + 1) = f(B) — f(A).
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