Submit your research to the International Journal "Notes on Intuitionistic Fuzzy Sets". Contact us at nifs.journal@gmail.com

Call for Papers for the 27th International Conference on Intuitionistic Fuzzy Sets is now open!
Conference: 5–6 July 2024, Burgas, Bulgaria • EXTENDED DEADLINE for submissions: 15 APRIL 2024.

Necessity and possibility

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Geometrical interpretation of necessity and possibility

Necessity and possibility in the context of intuitionistic fuzzy sets are two modal operators defined as follows:

Let [math]\displaystyle{ E }[/math] be a fixed universe and [math]\displaystyle{ A \subset E }[/math] be a given set. Let functions [math]\displaystyle{ \mu_A, \nu_A \ : \ E \ \rightarrow [0,1] }[/math] determine the degrees of membership and non-membership. Then,

[math]\displaystyle{ \Box A = \lbrace \langle x, \mu_A(x), 1 - \mu_A(x) \rbrace \ | \ x \in E \rbrace }[/math]

[math]\displaystyle{ \Diamond A = \lbrace \langle x, 1 - \nu_A(x), \nu_A(x) \rbrace \ | \ x \in E \rbrace }[/math]

are called, respectively, necessity and possibility.

When [math]\displaystyle{ A }[/math] is a proper IFS, i.e. there exists an element [math]\displaystyle{ x \in E }[/math] for which [math]\displaystyle{ \mu_A(x) \gt 0 }[/math], then

[math]\displaystyle{ \Box A \subset A \subset \Diamond A }[/math]

[math]\displaystyle{ \Box A \ne A \ne \Diamond A }[/math].

Obviously, for every fuzzy set, i.e. intuitionistic fuzzy set with [math]\displaystyle{ (\forall x \in E)(\pi_A(x) = 0) }[/math] it holds that

[math]\displaystyle{ \Box A = A = \Diamond A }[/math].

Propositions about necessity and possibility

For every intuitionistic fuzzy set the following statements are valid:[1]

[math]\displaystyle{ \begin{array}{r c l} & \\ \overline{\Box \overline{A}} & = & \Diamond A \\ \overline{\Diamond \overline{A}} & = & \Box A \\ \Box \Box A & = & \Box A \\ \Box \Diamond A & = & \Diamond A \\ \Diamond \Box A & = & \Box A \\ \Diamond \Diamond A & = & \Diamond A \end{array} }[/math]

Proof of the first statement:

[math]\displaystyle{ \begin{array}{r l} & \\ \overline{\Box \overline{A}} \ = & \overline{\Box \lbrace \langle x, \nu_A(x), \mu_A(x) \rbrace \ | \ x \in E \rbrace} \\ = & \overline{\lbrace \langle x, \nu_A(x), 1 - \nu_A(x) \rbrace \ | \ x \in E \rbrace} \\ = & \lbrace \langle x, 1 - \nu_A(x), \nu_A(x) \rbrace \ | \ x \in E \rbrace \\ = & \Diamond A \end{array} }[/math]

The following statements are also valid:[2]

[math]\displaystyle{ \begin{array}{r c l} & \\ \Box (A \cap B) & = & \Box A \cap \Box B \\ \Box (A \cup B) & = & \Box A \cup \Box B \\ \overline{\Box (\overline{A} + \overline{B})} & = & \Diamond A . \Diamond B \\ \overline{\Box (\overline{A} . \overline{B})} & = & \Diamond A + \Diamond B \\ \Diamond (A \cap B) & = & \Diamond A \cap \Diamond B \\ \Diamond (A \cup B) & = & \Diamond A \cup \Diamond B \\ \overline{\Diamond (\overline{A} + \overline{B})} & = & \Box A . \Box B \\ \overline{\Diamond (\overline{A} . \overline{B})} & = & \Box A + \Box B \\ \end{array} }[/math]

References

  1. Proposition 1.42, page 61 from Intuitionistic Fuzzy Sets: Theory and Applications, Krassimir Atanassov, Springer, 1999.
  2. Theorem 1.43, page 62 from Intuitionistic Fuzzy Sets: Theory and Applications, Krassimir Atanassov, Springer, 1999.