8-9 October 2020 • Burgas, Bulgaria

Submission: 15 May 2020 • Notification: 31 May 2020 • Final Version: 15 June 2020

Issue:Generalized net model of artificial bee colony optimization algorithm with intuitionistic fuzzy parameter adaptation

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to: navigation, search
shortcut
http://ifigenia.org/wiki/issue:nifs/24/3/79-91
Title of paper: Generalized net model of artificial bee colony optimization algorithm with intuitionistic fuzzy parameter adaptation
Author(s):
Dafina Zoteva
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. Georgi Bonchev Str., Sofia 1113, Bulgaria
Department of Computer Informatics, Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”
dafy.zotevaAt sign.pnggmail.com
Olympia Roeva
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. Georgi Bonchev Str., Sofia 1113, Bulgaria
olympiaAt sign.pngbiomed.bas.bg
Vassia Atanassova
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. Georgi Bonchev Str., Sofia 1113, Bulgaria
vassia.atanassovaAt sign.pnggmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 24 (2018), Number 3, pages 79–91
DOI: https://doi.org/10.7546/nifs.2018.24.3.79-91
Download: Download-icon.png PDF (484 Kb  Kb, Info) Download-icon.png
Abstract: A Generalized Net (GN) model of Intuitionistic Fuzzy Logic (IFL) control and parameter adaptation of the Artificial Bee Colony (ABC) algorithm is proposed in the present paper. The developed GN-model describes the internal logic of the ABC algorithm with an embedded IFL controller to determine the magnitude of perturbation, depending on the current iteration of the algorithm.
Keywords: Generalized net, Intuitionistic fuzzy logic, Artificial Bee Colony, Parameter adaptation.
AMS Classification: 03E72, 68Q85, 62H30.
References:
  1. Akay, B., & Karaboga, D. (2012) A modified artificial bee colony algorithm for realparameter optimization. Information Sciences, 192, 120–142.
  2. Amador-Angulo, L. & Castillo, O. (2016) A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Computing, 1–24.
  3. Amador-Angulo, L. & Castillo, O. (2015) Statistical analysis of type-1 and interval type-2 fuzzy logic in dynamic parameter adaptation of the BCO. Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology, 776–783.
  4. Atanassov, K. (1986) Intuitionistic fuzzy sets. Fuzzy Set and Systems, 20(1), 87–96.
  5. Atanassov, K. (1991) Generalized Nets. World Scientific, Singapore.
  6. Atanassov, K. (1997) Generalized Nets and Systems Theory. Academic Publishing House “Prof. M. Drinov”, Sofia.
  7. Atanassov, K. (1998) Generalized Nets in Artificial Intelligence. Volume 1: Generalized Nets and Expert Systems. Academic Publishing House “Prof. M. Drinov”, Sofia.
  8. Atanassov, K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
  9. Atanassov, K. (2007) On Generalized Nets Theory. “Prof. Marin Drinov” Acad. Publ. House, Sofia.
  10. Atanassov, K. (2012) On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
  11. Caraveo, C., Valdez, F., & Castillo, O. (2012) Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Applied Soft Computing, 43, 131–142.
  12. Fidanova, S., Atanassov, K., & Marinov, P. (2011) Generalized Nets in Artificial Intelligence. Volume 5: Generalized Nets and Ant Colony Optimization. Prof. Marin Drinov Academyc Publishing House, Sofia.
  13. Gao, W.-F., & Liu, S.-Y. (2012) A modified artificial bee colony algorithm. Computers & Operations Research, 39, 687–697.
  14. Gao, W.-F., Chan, T. S. F., Huang, L., & Liu, S. (2015) Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood. Information Sciences, 316, 180–200.
  15. Gu, W., Yin, M., & Wang, C. (2012) Self adaptive artificial bee colony for global numerical optimization. IERI Procedia, 1, 59–65.
  16. Herrera, F., & Lozano, M. (2003) Fuzzy adaptive genetic algorithms: design, taxonomy, and future directions. Soft Computing, 7, 545–562.
  17. Karaboga, D. (2005) An Idea Based on Honeybee Swarm for Numerical Optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.
  18. Karaboga, D., & Akay, B. (2009) A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214, 108–132.
  19. Karaboga, D., & Ozturk, C. (2011) A novel clustering approach: artificial bee colony (ABC) algorithm. Applied Soft Computing, 11(1), 652–657.
  20. Luo, J., Wang, Q., & Xiao X. (2013) A modified artificial bee colony algorithm based on converge-onlookers approach for global optimization. Applied Mathematics and Computation, 219, 10253–10262.
  21. Pan, Q. K., Tasgetiren, M. F., Suganthan, P. N., & Chua, T. J. (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences, 181(12), 2455–2468.
  22. Perez, J., Valdez, F., Roeva, O., & Castillo, O. (2016) Parameter adaptation of the Bat Algorithm. Notes on Intuitionistic Fuzzy Sets, 22(2), 87–98.
  23. Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2005) The Bees Algorithm. Technical Report, Manufacturing Engineering Centre, Cardiff University, UK.
  24. Prieto, J. A. F., & Pérez, J. R. V. (2008) Adaptive genetic algorithm control parameter optimization to verify the network protocol performance. Proceedings of Information Processing and Management Uncertainty’08, 785–791.
  25. Roeva, O., & Atanassov, K. (2008) Generalized net model of a modified genetic algorithm. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 7, 93–99.
  26. Roeva, O., & Melo-Pinto, P. (2013) Generalized net model of firefly algorithm. Proceedings of the 14th International Workshop on Generalized Nets, Burgas, 22–27.
  27. Roeva, O., & Michalíková, A. (2014) Intuitionistic fuzzy logic control of metaheuristic algorithms' parameters via a generalized net. Notes on Intuitionistic Fuzzy Sets, 20(4), 53–58.
  28. Roeva, O., & Pencheva, T. (2010) Generalized net model of a multi-population genetic algorithm. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 8, 91–101.
  29. Roeva, O., Perez, J., Valdez, F., & Castillo, O. (2016) InterCriteria analysis of bat algorithm with parameter adaptation using type-1 and interval type-2 fuzzy systems. Notes on Intuitionistic Fuzzy Sets, 22(3), 91–105.
  30. Roeva, O., Shannon, A., & Pencheva, T. (2012) Description of simple genetic algorithm modifications using generalized nets. Proceedings of the 6th IEEE International Conference on Intelligent Systems 2012, Sofia, Bulgaria, Vol. 2, 178–183.
  31. Sombra, A., Valdez, F., Melin, P., & Castillo, O. (2013) A new gravitational search algorithm using fuzzy logic to parameter adaptation. Proceedings of the 2013 IEEE Congress on Evolutionary Computation, 1068–1074.
  32. Valdez, F., Melin, P., & Castillo, O. (2014) A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Systems with Applications, 41(14) 6459–6466.
  33. Zhu, G., & Wong, S. (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 217(7), 3166–3173.
  34. Zoteva, D., Atanassova, V., & Roeva, O. (2018) Generalized net model of artificial bee colony optimization algorithm. IEEE Proceedings of the Advances in Neural Networks and Applications 2018, in press.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.